A Novel High-Speed and Energy Efficient 10-Transistor Full Adder Design

Author(s):  
Jin-Fa Lin ◽  
Yin-Tsung Hwang ◽  
Ming-Hwa Sheu ◽  
Cheng-Che Ho
2017 ◽  
Vol 61 ◽  
pp. 79-88 ◽  
Author(s):  
Asma Torkzadeh Mahani ◽  
Peiman Keshavarzian

2017 ◽  
Vol 26 (05) ◽  
pp. 1750084 ◽  
Author(s):  
Pankaj Kumar ◽  
Rajender Kumar Sharma

An energy efficient internal logic approach for designing two 1-bit full adder cells is proposed in this work. It is based on decomposition of the full adder logic into the smaller modules. Low power, high speed and smaller area are the main features of the proposed approach. A modified power aware NAND gate, an essential entity, is also presented. The proposed full adder cells achieve 30.13% and improvement in their power delay product (PDP) metrics when compared with the best reported full adder design. Some of the popular adders and proposed adders are designed with cadence virtuoso tool with UMC 90[Formula: see text]nm technology operating at 1.2[Formula: see text]V supply voltage and UMC 55[Formula: see text]nm CMOS technology operating at 1.0[Formula: see text]V. These designs are tested on a common environment. During the experiment, it is also found that the proposed adder cells exhibit excellent signal integrity and driving capability when operated at low voltages.


Author(s):  
Amanpreet Sandhu ◽  
Sheifali Gupta

Quantum-dot-cellular-automata (QCA) is the imminent transistor less technology, considered at nano level with high speed of operation and lower power dissipation features. The present paper proposes a novel and an efficient 5-input coplanar majority gate (PMG) with improved structural and energy efficiency. The proposed gate consumes an occupational area of 0.01μm2 with 17 QCA cells which is 50% less in comparison to the best designs reported in literature. The proposed structure is also more energy efficient because it dissipates 21.1% less energy than the best reported designs. The correctness of a proposed majority gate is verified by designing a single bit full adder. The new 1-bit full adder design is structural efficient and robust in terms of gate count and clock delay. It consumes occupational area of 0.05μm2 with 58 QCA cells showing 16.6% improvement in structural efficiency as compared to the best design reported in. It is having a gate count of 4 with the delay of 1 clock cycle. Here, the QCADesigner and QCAPro tools are utilized for the simulation and energy dissipation analysis of proposed majority gate and full adder design.


Sign in / Sign up

Export Citation Format

Share Document