A New High Drive Class-AB FVF-Based Second Generation Voltage Conveyor

2020 ◽  
Vol 67 (3) ◽  
pp. 405-409 ◽  
Author(s):  
G. Barile ◽  
G. Ferri ◽  
L. Safari ◽  
V. Stornelli
Author(s):  
Gianluca Giustolisi ◽  
Alfio Dario Grasso ◽  
Salvatore Pennisi

2014 ◽  
Vol 979 ◽  
pp. 62-65
Author(s):  
Thawatchai Thongleam ◽  
Varakorn Kasemsuwan

In this paper, a feedforward bulk-driven class AB fully-differential second-generation current conveyer (FDCCII) is presented. Bulk-driven differential pair is employed for the input stage allowing the FDCCII to operate with rail-to-rail operation. Feedfoward technique is also incorporated into input stage to increase the DC gain and minimize the common mode gain. The circuit performance is verified using HSPICE in 0.18 μm CMOS technology. The simulation results show rail-to-rail input and output swings. The DC voltage transfer characteristic between ports Y and X and DC current transfer characteristic between ports X and Z shows good linearity. The bandwidths show 25.7 MHz (VX/VY), 30 MHz (IZ/IX), respectively. The power dissipation is 267.5 μW.


Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1292 ◽  
Author(s):  
Barile ◽  
Stornelli ◽  
Ferri ◽  
Safari ◽  
D’Amico

In this paper, a novel low voltage low power CMOS second generation voltage conveyor (VCII) with an improved voltage range at both the X and Z terminals is presented. The proposed VCII is formed by a current buffer based on a class AB regulated common-gate stage and a modified rail-to-rail voltage buffer. Spice simulation results using LFoundry 0.15 μm low-Vth CMOS technology with a ±0.9 V supply voltage are provided to demonstrate the validity of the designed circuit. Thanks to the class AB behavior, from a bias current of 10 µA, the proposed VCII is capable of driving 0.5 mA on the X terminal, with a total power consumption of 120 µW. The allowed voltage swing on the Z terminal is at least equal to ±0.83 V, while on the X terminals it is ±0.72 V. Both DC and AC voltage and current gains are provided, and time domain simulations, where the voltage conveyor is used as a transimpedance amplifier (TIA), are also presented. A final table that summarizes the main features of the circuit, comparing them with the literature, is also given.


2008 ◽  
Vol 41 (14) ◽  
pp. 23
Author(s):  
SHERRY BOSCHERT
Keyword(s):  

1986 ◽  
Vol 31 (12) ◽  
pp. 973-974
Author(s):  
Eugene E. Levitt
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document