cmos amplifier
Recently Published Documents


TOTAL DOCUMENTS

203
(FIVE YEARS 29)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Taiki Machii ◽  
Suguru Kameda ◽  
Mizuki Motoyoshi ◽  
Noriharu Suematsu
Keyword(s):  

2021 ◽  
Author(s):  
Shinichiro Fujimoto ◽  
Ricky Smith ◽  
Shuhei Amakawa ◽  
Takeshi Yoshida ◽  
Minoru Fujishima

Author(s):  
Urvashi Bansal ◽  
Abhilasha Bakre ◽  
Prem Kumar ◽  
Devansh Yadav ◽  
Mohit Kumar ◽  
...  

A low voltage low power two-stage CMOS amplifier with high open-loop gain, high gain bandwidth product (GBW) and enhanced slew rate is presented in this work. The proposed circuit makes use of folded cascode gm-boosting cells in conjunction with a low voltage gain enhanced cascode mirror using quasi-floating gate (QFGMOS) transistors. QFGMOS transistors are also used in input pair and adaptive biasing, which facilitate large dynamic output current in the presented circuit. Consequently, the slew rate is enhanced without much increase in static power dissipation. The unity gain frequency (UGF) and dc gain of the circuit are 29.4[Formula: see text]MHz and 132[Formula: see text]dB, respectively. The amplifier is operated at 0.6[Formula: see text]V dual supply with 89[Formula: see text][Formula: see text]W power consumption and has a nearly symmetrical average slew rate of 51.5[Formula: see text]V/[Formula: see text]s. All simulations including Monte Carlo and corner analysis are carried out using 180-nm CMOS technology for validating the design with help of spice tools.


2021 ◽  
Vol 12 ◽  
pp. 89-92
Author(s):  
Nihar Jouti Sama ◽  
Manash Pratim Sarma

OP-AMPs finds applications in different domains of electronics engineering including communications. There has been several OP-AMP configurations realized in the last decades for different target applications. But with the evolution of communication standards, to meet the demand for high data rate over the years, requirement for a high frequency and high BW OP-AMP is gaining attention. This makes the design challenge much higher. This paper presents a two-stage CMOS amplifier which uses frequency compensation method to facilitate higher BW. Different parameters like Gain, Gain band width product (GBWP), Phase Margin and Total Power dissipation are considered in this design. A step-by-step procedure for an efficient amplifier design is followed using frequency compensation. We have achieved a gain-bandwidth product (GBWP) of 110 MHz that is capable of driving large capacitive loads. It also achieves 77.7 dB gain with a phase margin of 60o.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1613
Author(s):  
Waldemar Jendernalik ◽  
Jacek Jakusz ◽  
Robert Piotrowski ◽  
Grzegorz Blakiewicz ◽  
Stanisław Szczepański

A voltage unity-gain zero-offset CMOS amplifier with reduced gain error and increased PSRR (power supply rejection ratio) is proposed. The amplifier uses two feed mechanisms, negative feedback and supporting positive feedforward, to achieve low deviation from unit gain over the entire input range. The circuit, designed in a standard 180-nanometer 1.8-voltage CMOS process, is compared with two known buffers of similar topology, also designed in the same process. Simulations show that, with the same supply (1.8 V), power (1.2 mW), load (12 pF), bandwidth (50 MHz), and similar area (600 µm2), the proposed buffer achieves the lowest gain error (0.3%) and the highest PSRR (72 dB).


2021 ◽  
Author(s):  
Hajime Sakai ◽  
Kyoya Takano ◽  
Yohtaro Umeda ◽  
Shinsuke Hara ◽  
Akifumi Kasamatsu

Sign in / Sign up

Export Citation Format

Share Document