NCPLP: A Novel Approach for Predicting Microbe-Associated Diseases With Network Consistency Projection and Label Propagation

Author(s):  
Meng-Meng Yin ◽  
Jin-Xing Liu ◽  
Ying-Lian Gao ◽  
Xiang-Zhen Kong ◽  
Chun-Hou Zheng
Author(s):  
Poulami Sarkar ◽  
Svetlana Kontsedalov ◽  
Galina Lebedev ◽  
Murad Ghanim

Several vector-borne plant pathogens have evolved mechanisms to exploit and hijack vector host cellular, molecular and defense mechanisms for their transmission. Over the past few years, Liberibacter species, which are transmitted by several psyllid vectors, have become an economically important group of pathogens that devastated the citrus industry and caused tremendous losses to many other important crops worldwide. The molecular mechanisms underlying the interactions of Liberibacter species with their psyllid vectors are poorly studied. Candidatus Liberibacter solanacearum (CLso) associated with important vegetable diseases is transmitted by the carrot psyllid, Bactericera trigonica in a persistent manner. Here, we elucidated the role of B. trigonica Arp2/3 protein complex, which plays a major role in the regulation of the actin cytoskeleton, in the transmission of CLso. CLso co-localized with ArpC2, a key protein in this complex, and this co-localization strongly associated with actin filaments. Silencing the psyllid ArpC2 disrupted the co-localization and the dynamics of F-actin. Silencing RhoGAP21 and Cdc42, which act in the signaling cascade leading to upregulation of Arp2/3 and F-actin bundling, also showed similar results. On the other hand, silencing ArpC5, another component of the complex, did not induce any significant effects on F-actin formation. Finally, ArpC2 silencing caused 73.4% reduction in CLso transmission by psyllids, strongly suggesting that its transmission by B. trigonica is cytoskeleton-dependent and it interacts with ArpC2 to exploit the intracellular actin nucleation process for transmission. Targeting this unique interaction could lead to developing a novel strategy for the management of Liberibacter-associated diseases. IMPORTANCE Plant diseases caused by vector-borne pathogens are responsible for tremendous losses and threaten some of the most important agricultural crops. A good example is the citrus greening disease caused by bacteria of the genus Liberibacter and transmitted by psyllids, and has devastated the citrus industry in the US, China and Brazil. Here we show that the psyllid-transmitted Candidatus Liberibacter solanacearum (CLso) employs the actin cytoskeleton of psyllid gut cells, specifically the ArpC2 protein in the Arp2/3 complex of this system, for movement and transmission in the vector. Silencing ArpC2 dramatically influenced interaction of CLso with the cytoskeleton and decreased the bacteria transmission to plants. This system could be targeted for developing a novel approach for the control of Liberibacter- associated diseases.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ling Zhu ◽  
Derek F. Wong ◽  
Lidia S. Chao

This paper presents a novel approach for unsupervised shallow parsing model trained on the unannotated Chinese text of parallel Chinese-English corpus. In this approach, no information of the Chinese side is applied. The exploitation of graph-based label propagation for bilingual knowledge transfer, along with an application of using the projected labels as features in unsupervised model, contributes to a better performance. The experimental comparisons with the state-of-the-art algorithms show that the proposed approach is able to achieve impressive higher accuracy in terms ofF-score.


2020 ◽  
Author(s):  
Xiao Lin ◽  
Zhi-Jie Wang ◽  
Lizhuang Ma ◽  
Renjie Li ◽  
Mei-E Fang

Abstract Saliency detection has been a hot topic in the field of computer vision. In this paper, we propose a novel approach that is based on multiscale segmentation and fuzzy broad learning. The core idea of our method is to segment the image into different scales, and then the extracted features are fed to the fuzzy broad learning system (FBLS) for training. More specifically, it first segments the image into superpixel blocks at different scales based on the simple linear iterative clustering algorithm. Then, it uses the local binary pattern algorithm to extract texture features and computes the average color information for each superpixel of these segmentation images. These extracted features are then fed to the FBLS to obtain multiscale saliency maps. After that, it fuses these saliency maps into an initial saliency map and uses the label propagation algorithm to further optimize it, obtaining the final saliency map. We have conducted experiments based on several benchmark datasets. The results show that our solution can outperform several existing algorithms. Particularly, our method is significantly faster than most of deep learning-based saliency detection algorithms, in terms of training and inferring time.


2019 ◽  
Vol 476 (24) ◽  
pp. 3705-3719 ◽  
Author(s):  
Avani Vyas ◽  
Umamaheswar Duvvuri ◽  
Kirill Kiselyov

Platinum-containing drugs such as cisplatin and carboplatin are routinely used for the treatment of many solid tumors including squamous cell carcinoma of the head and neck (SCCHN). However, SCCHN resistance to platinum compounds is well documented. The resistance to platinum has been linked to the activity of divalent transporter ATP7B, which pumps platinum from the cytoplasm into lysosomes, decreasing its concentration in the cytoplasm. Several cancer models show increased expression of ATP7B; however, the reason for such an increase is not known. Here we show a strong positive correlation between mRNA levels of TMEM16A and ATP7B in human SCCHN tumors. TMEM16A overexpression and depletion in SCCHN cell lines caused parallel changes in the ATP7B mRNA levels. The ATP7B increase in TMEM16A-overexpressing cells was reversed by suppression of NADPH oxidase 2 (NOX2), by the antioxidant N-Acetyl-Cysteine (NAC) and by copper chelation using cuprizone and bathocuproine sulphonate (BCS). Pretreatment with either chelator significantly increased cisplatin's sensitivity, particularly in the context of TMEM16A overexpression. We propose that increased oxidative stress in TMEM16A-overexpressing cells liberates the chelated copper in the cytoplasm, leading to the transcriptional activation of ATP7B expression. This, in turn, decreases the efficacy of platinum compounds by promoting their vesicular sequestration. We think that such a new explanation of the mechanism of SCCHN tumors’ platinum resistance identifies novel approach to treating these tumors.


2020 ◽  
Vol 51 (3) ◽  
pp. 544-560 ◽  
Author(s):  
Kimberly A. Murphy ◽  
Emily A. Diehm

Purpose Morphological interventions promote gains in morphological knowledge and in other oral and written language skills (e.g., phonological awareness, vocabulary, reading, and spelling), yet we have a limited understanding of critical intervention features. In this clinical focus article, we describe a relatively novel approach to teaching morphology that considers its role as the key organizing principle of English orthography. We also present a clinical example of such an intervention delivered during a summer camp at a university speech and hearing clinic. Method Graduate speech-language pathology students provided a 6-week morphology-focused orthographic intervention to children in first through fourth grade ( n = 10) who demonstrated word-level reading and spelling difficulties. The intervention focused children's attention on morphological families, teaching how morphology is interrelated with phonology and etymology in English orthography. Results Comparing pre- and posttest scores, children demonstrated improvement in reading and/or spelling abilities, with the largest gains observed in spelling affixes within polymorphemic words. Children and their caregivers reacted positively to the intervention. Therefore, data from the camp offer preliminary support for teaching morphology within the context of written words, and the intervention appears to be a feasible approach for simultaneously increasing morphological knowledge, reading, and spelling. Conclusion Children with word-level reading and spelling difficulties may benefit from a morphology-focused orthographic intervention, such as the one described here. Research on the approach is warranted, and clinicians are encouraged to explore its possible effectiveness in their practice. Supplemental Material https://doi.org/10.23641/asha.12290687


2015 ◽  
Vol 21 ◽  
pp. 128
Author(s):  
Kaniksha Desai ◽  
Halis Akturk ◽  
Ana Maria Chindris ◽  
Shon Meek ◽  
Robert Smallridge ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document