Resolution and signal processing technique of surface charge density measurement with electrostatic probe

2004 ◽  
Vol 11 (1) ◽  
pp. 122-129 ◽  
Author(s):  
A. Kumada ◽  
S. Okabe ◽  
K. Hidaka
2021 ◽  
Author(s):  
Amit Kumar ◽  
V. Subramanian ◽  
Shailesh Joshi ◽  
B. Venkatraman

In the present ongoing pandemic, the N95 respirator is an essential protective barrier to suppress the spread of the SARS-Cov-2 virus and protect the frontline worker from exposure. The N95 respirators are meant for single usage; however, they can be used after decontamination in-light of the economy and shortfall in availability. At this juncture, the respirators performance after various types of sterilization and usage condition is required to be analyzed in detail. With this motto, this work has proceeded. The filtration efficiency, pressure drop, and quality factor of the respirator are evaluated for two face velocities (5.8 and 26.4 cm/s) following different sterilization methods. Sterilization techniques used here are dry air oven heating, gamma irradiation, and immersing in a 10% concentration of liquid hydrogen peroxide. The particle filtration performance and electrostatic surface charge density measurement are used to determine the facemasks efficacy after sterilization. The methods recommended to sterilize N95 masks without affecting their performance are (i) using dry air heat at 80oC and (ii) H2O2 soaking. The highest reduction in filtration efficiency is observed to be 30-35% after gamma irradiation due to a change in the electrostatic properties of the respirator layers. However, the filtration efficiency does not change significantly for other sterilization methods despite a change in charge density, but there is no direct correlation with filtration efficiency. Electrostatic charge measurement of the filtration layer is a crucial indicator of filtration efficiency degradation. Policymakers can use these data during potential future N95 shortage to assess the viability of sterilization methods.


2003 ◽  
Vol 58 (1-2) ◽  
pp. 45-58 ◽  
Author(s):  
Akiko Kumada ◽  
Yasuhiro Shimizu ◽  
Masakuni Chiba ◽  
Kunihiko Hidaka

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1519
Author(s):  
Leixin Ouyang ◽  
Rubia Shaik ◽  
Ruiting Xu ◽  
Ge Zhang ◽  
Jiang Zhe

Many bio-functions of cells can be regulated by their surface charge characteristics. Mapping surface charge density in a single cell’s surface is vital to advance the understanding of cell behaviors. This article demonstrates a method of cell surface charge mapping via electrostatic cell–nanoparticle (NP) interactions. Fluorescent nanoparticles (NPs) were used as the marker to investigate single cells’ surface charge distribution. The nanoparticles with opposite charges were electrostatically bonded to the cell surface; a stack of fluorescence distribution on a cell’s surface at a series of vertical distances was imaged and analyzed. By establishing a relationship between fluorescent light intensity and number of nanoparticles, cells’ surface charge distribution was quantified from the fluorescence distribution. Two types of cells, human umbilical vein endothelial cells (HUVECs) and HeLa cells, were tested. From the measured surface charge density of a group of single cells, the average zeta potentials of the two types of cells were obtained, which are in good agreement with the standard electrophoretic light scattering measurement. This method can be used for rapid surface charge mapping of single particles or cells, and can advance cell-surface-charge characterization applications in many biomedical fields.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2448
Author(s):  
Hongbin Lu ◽  
Chuantao Zheng ◽  
Lei Zhang ◽  
Zhiwei Liu ◽  
Fang Song ◽  
...  

The development of an efficient, portable, real-time, and high-precision ammonia (NH3) remote sensor system is of great significance for environmental protection and citizens’ health. We developed a NH3 remote sensor system based on tunable diode laser absorption spectroscopy (TDLAS) technique to measure the NH3 leakage. In order to eliminate the interference of water vapor on NH3 detection, the wavelength-locked wavelength modulation spectroscopy technique was adopted to stabilize the output wavelength of the laser at 6612.7 cm−1, which significantly increased the sampling frequency of the sensor system. To solve the problem in that the light intensity received by the detector keeps changing, the 2f/1f signal processing technique was adopted. The practical application results proved that the 2f/1f signal processing technique had a satisfactory suppression effect on the signal fluctuation caused by distance changing. Using Allan deviation analysis, we determined the stability and limit of detection (LoD). The system could reach a LoD of 16.6 ppm·m at an average time of 2.8 s, and a LoD of 0.5 ppm·m at an optimum averaging time of 778.4 s. Finally, the measurement result of simulated ammonia leakage verified that the ammonia remote sensor system could meet the need for ammonia leakage detection in the industrial production process.


Author(s):  
Linards Lapčinskis ◽  
Artis Linarts ◽  
Kaspars Mālnieks ◽  
Hyunseung Kim ◽  
Kristaps Rubenis ◽  
...  

In this study, we investigate triboelectrification in polymer-based nanocomposites using identical polymer matrixes containing different concentrations of nanoparticles (NPs). The triboelectric surface charge density on polymer layers increased as the...


Sign in / Sign up

Export Citation Format

Share Document