Hybrid Microstrip T-Stub/Defected Ground Structure Cell for Electromagnetic Interference Bandpass Filter Design

2011 ◽  
Vol 53 (3) ◽  
pp. 717-725 ◽  
Author(s):  
Xun Luo ◽  
Jian-Guo Ma ◽  
Er-Ping Li ◽  
Kaixue Ma
Author(s):  
E. Edwar ◽  
M.R. Yusron ◽  
Dharu Arseno

Filter is an important part in telecommunication system including in radar system. To get the better performance in selecting the signal, a ftlter must have a good Q-Factor. In this paper, an investigation of a ftlter design for synthetic radar has been successfully done. This ftlter has been designed to work at x-band using square loop resonator (SLR). A Defected Ground Structure (DGS) has been implemented to this work to increase the Q-factor of the ftlter. The result of measurement getting that the center frequency at 9.51 GHz with the bandwidth 610 MHz and PCB size of this ftlter is 22 mm x 16 mm.


2019 ◽  
Vol 14 (4) ◽  
pp. 448-455 ◽  
Author(s):  
Nanang Ismail ◽  
Teddy Surya Gunawan ◽  
Santi Kartika S ◽  
Teguh Praludi ◽  
Eki A.Z. Hamidi

Radar has been widely used in many fields, such as telecommunication, military applications, and navigation. The filter is one of the most important parts of a radar system, in which it selects the necessary frequency and blocks others. This paper presents a novel yet simple filter design for S-band radar in the frequency range of 2.9 to 3.1 GHz. The center frequency of the filter was designed at 3 GHz with a bandwidth of 200 MHz, insertion loss larger than -3 dB and return loss less than -20 dB. Fifth order microstrip hairpin bandpass filter (BPF) was designed and implemented on Rogers 4350B substrate which has a dielectric relative constant value of (εr)= 3.48 and substrate thickness of (h) =1.524 mm. One element of the square groove was added as Defected Ground Structure (DGS) which can decrease the filter size, reduce harmonization, and increase return loss. Two scenarios were used in the measurement, i.e. with and without enclosed aluminum casing. Results showed that BPF without casing obtained the insertion loss of -1.748 dB at 2.785 GHz and return loss of -21.257 dB in the frequency range between 2.785 to 2.932 GHz. On the other hand, BPF with casing shows a better performance, in which it obtained the insertion loss of -1.643 dB at 2.921 GHz and return loss of -19.529 in the frequency range between 2.820 to 3.021 GHz. Although there is small displacement of frequency and response value between the simulation and implementation, our BPF has the ability to work on S-band radar with a frequency range of 2 to 4 GHz. 


Author(s):  
Shita Fitria Nurjihan ◽  
Yenniwarti Rafsyam

Microstrip filters can be designed with various methods to obtain good performances, such as defected ground structure, open-ended slot, planar edge coupled, and split ring resonator with groundplane windowing. In this paper, the design of an ultra-wideband microstrip bandpass filter used the defected ground structure (DGS) method by adding a circular slot to the groundplane. The addition of the circular slot was carried out to improve the value of S parameter (return loss and insertion loss) from the initial filter design without a circular slot. In the simulation process, optimization was carried out by changing the value of filter component parameters such as patch length and thickness and circular slot width. The simulation results showed that the microstrip bandpass filter could pass frequencies in the range of 1.4 GHz to 5.7 GHz with the bandwidth response of 4.3 GHz. In addition, filter analysis could also be done with an equivalent circuit represented by lumped element components in the form of capacitors and inductors connected in series or parallel. The simulation results of the equivalent circuit had a wider bandwidth, which was able to pass frequencies in the range of 1.2 GHz to 6.1 GHz with a bandwidth response of 4.9 GHz.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Pravin Ratilal Prajapati

An application of defected ground structure (DGS) to reduce out-of-band harmonics has been presented. A compact, proximity feed fractal slotted microstrip antenna for wireless local area network (WLAN) applications has been designed. The proposed 3rd iteration reduces antenna size by 43% as compared to rectangular conventional antenna and by introducing H shape DGS, the size of an antenna is further reduced by 3%. The DGS introduces stop band characteristics and suppresses higher harmonics, which are out of the band generated by 1st, 2nd, and 3rd iterations. H shape DGS is etched below the 50 Ω feed line and transmission coefficient parameters (S21) are obtained by CST Microwave Studio software. The values of equivalent L and C model have been extracted using a trial version of the diplexer filter design software. The stop band characteristic of the equivalent LC model also has been simulated by the Advance Digital System software, which gives almost the same response as compared to the simulation of CST Microwave Studio V. 12. The proposed antenna operates from 2.4 GHz to 2.49 GHz, which covers WLAN band and has a gain of 4.46 dB at 2.45 GHz resonance frequency.


2007 ◽  
Vol 70 ◽  
pp. 269-280 ◽  
Author(s):  
Jun Chen ◽  
Zi-Bin Weng ◽  
Yong-Chang Jiao ◽  
Fu-Shun Zhang

Sign in / Sign up

Export Citation Format

Share Document