Extrapolation of the High Frequency and Late Time Response With Local Linear Basis Functions and Its Application in Evaluating Lightning Electric Field

2020 ◽  
Vol 62 (5) ◽  
pp. 2101-2110
Author(s):  
Pengfei Zhang ◽  
Jun Zou ◽  
Jaebok Lee ◽  
Mun-No Ju
Geophysics ◽  
2013 ◽  
Vol 78 (4) ◽  
pp. E173-E188 ◽  
Author(s):  
Bension Sh. Singer ◽  
Svetlana Atramonova

The time-domain marine controlled-source electromagnetic method, based on injection of electric currents into the sea via a vertical cable and measurements of the transient vertical electric field, is characterized by high sensitivity to resistive reservoirs and robustness with respect to distorting effects of lateral heterogeneities. This is due to the fact that a vertical electric dipole induces in a stratified medium only a transverse magnetic (TM) field. In addition, the vertical electric field is not directly contributed by the transverse electric (TE) component of the field scattered by heterogeneities. Nevertheless, a closed-form solution shows that the first order effect of a lateral heterogeneity displays itself as a parallel shift of the late time response curves. The effect is also observed in 3D responses evaluated by numerical solutions of the integral equation of the modified iterative dissipative method. Moreover, in “favorable” conditions, scattering on heterogeneities may change the law of the field decay. The parallel shift of the late time curves is caused by vertical polarization of the scatterer, while its horizontal polarization leads to an abnormally fast decay of the vertical electric field. The latter effect, observed against the background of the general decay of the free electromagnetic field, can be associated with “energy channeling from the TM to TE field.” Neither of the effects necessarily deteriorates the method sensitivity. Unlike the vertical electric field, the horizontal electromagnetic field is contributed by the scattered TE field. As a result, the abnormally fast decay of the vertical electric field is accompanied by an abnormally slow decay of the horizontal components. The transient horizontal electric field may become almost insensitive to the reservoir resistivity. In addition to unrealistically harsh requirements to the transmitter tilt, this may render accurate measurements of the horizontal electromagnetic field of a vertical electric bipole not feasible.


2019 ◽  
Vol 9 (3) ◽  
pp. 344-352 ◽  
Author(s):  
L.I. Stefanovich ◽  
O.Y. Mazur ◽  
V.V. Sobolev

Introduction: Within the framework of the phenomenological theory of phase transitions of the second kind of Ginzburg-Landau, the kinetics of ordering of a rapidly quenched highly nonequilibrium domain structure is considered using the lithium tantalate and lithium niobate crystals as an example. Experimental: Using the statistical approach, evolution equations describing the formation of the domain structure under the influence of a high-frequency alternating electric field in the form of a standing wave were obtained. Numerical analysis has shown the possibility of forming thermodynamically stable mono- and polydomain structures. It turned out that the process of relaxation of the system to the state of thermodynamic equilibrium can proceed directly or with the formation of intermediate quasi-stationary polydomain asymmetric phases. Results: It is shown that the formation of Regular Domain Structures (RDS) is of a threshold character and occurs under the influence of an alternating electric field with an amplitude less than the critical value, whose value depends on the field frequency. The conditions for the formation of RDSs with a micrometer spatial scale were determined. Conclusion: As shown by numerical studies, the RDSs obtained retain their stability, i.e. do not disappear even after turning off the external electric field. Qualitative analysis using lithium niobate crystals as an example has shown the possibility of RDSs formation in high-frequency fields with small amplitude under resonance conditions


Sign in / Sign up

Export Citation Format

Share Document