GF(2191) Elliptic Curve Processor using Montgomery Ladder and High Speed Finite Field Arithmetic Unit

Author(s):  
Chang-soo Ha ◽  
Joo-hong Kim ◽  
Byeong-yoon Choi ◽  
Jong-hyoung Lee ◽  
Ho-won Kim
Author(s):  
Yan-Haw Chen ◽  
Chien-Hsing Huang

An efficient method to compute the finite field multiplication for Elliptic Curve point multiplication at high speed encryption of the message is presented. The methods of the operations are based on dynamic lookup table and modified Horner rule method. The modified Horner rule method is not only to finite field operations but also to Elliptic curve scalar multiplication in the encryption and decryption. By comparison with using Russian Peasant method and in the new proposed method, one of the advantages of utilizing the proposed algorithm is that in the Elliptic Curve point addition are reduced by a factor of three in GF (2163). Therefore, using the Algorithm 1 running on Intel CPU, computation cost of the multiplication method is above 70% faster than using standard multiplication by Russian Peasant method. Ultimately, the proposed Algorithm 1 for evaluating multiplication can be made regular, simple and suitable for software implementations.  


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1451
Author(s):  
Asep Muhamad Awaludin ◽  
Harashta Tatimma Larasati ◽  
Howon Kim

In this paper, we present a high-speed, unified elliptic curve cryptography (ECC) processor for arbitrary Weierstrass curves over GF(p), which to the best of our knowledge, outperforms other similar works in terms of execution time. Our approach employs the combination of the schoolbook long and Karatsuba multiplication algorithm for the elliptic curve point multiplication (ECPM) to achieve better parallelization while retaining low complexity. In the hardware implementation, the substantial gain in speed is also contributed by our n-bit pipelined Montgomery Modular Multiplier (pMMM), which is constructed from our n-bit pipelined multiplier-accumulators that utilizes digital signal processor (DSP) primitives as digit multipliers. Additionally, we also introduce our unified, pipelined modular adder/subtractor (pMAS) for the underlying field arithmetic, and leverage a more efficient yet compact scheduling of the Montgomery ladder algorithm. The implementation for 256-bit modulus size on the 7-series FPGA: Virtex-7, Kintex-7, and XC7Z020 yields 0.139, 0.138, and 0.206 ms of execution time, respectively. Furthermore, since our pMMM module is generic for any curve in Weierstrass form, we support multi-curve parameters, resulting in a unified ECC architecture. Lastly, our method also works in constant time, making it suitable for applications requiring high speed and SCA-resistant characteristics.


Author(s):  
Asep Muhamad Awaludin ◽  
Harashta Tatimma Larasati ◽  
Howon Kim

In this paper, we present a high-speed, unified elliptic curve cryptography (ECC) processor for arbitrary Weierstrass curves over GF(p), which to the best of our knowledge, outperforms other similar works in terms of execution time. Our approach employs the combination of the schoolbook long and Karatsuba multiplication algorithm for the elliptic curve point multiplication (ECPM) to achieve better parallelization while retaining low complexity. In the hardware implementation, the substantial gain in speed is also contributed by our n-bit pipelined Montgomery Modular Multiplier (pMMM), which is constructed from our n-bit pipelined multiplier-accumulators that utilizes DSP primitives as digit multipliers. Additionally, we also introduce our unified, pipelined modular adder/subtractor (pMAS) for the underlying field arithmetic, and leverage a more efficient yet compact scheduling of the Montgomery ladder algorithm. The implementation on the 7-series FPGA: Virtex-7, Kintex-7, and XC7Z020, yields 0.139, 0.138, and 0.206 ms of execution time, respectively. Furthermore, since our pMMM module is generic for any curve in Weierstrass form, we support multi-curve parameters, resulting in a unified ECC architecture. Lastly, our method also works in constant time, making it suitable for applications requiring high speed and SCA-resistant characteristics.


Sign in / Sign up

Export Citation Format

Share Document