scholarly journals The Basic Performance of a Precipitation Retrieval Algorithm for the Global Precipitation Measurement Mission's Single/Dual-Frequency Radar Measurements

2013 ◽  
Vol 51 (12) ◽  
pp. 5239-5251 ◽  
Author(s):  
Shinta Seto ◽  
Toshio Iguchi ◽  
Taikan Oki
2021 ◽  
Vol 13 (22) ◽  
pp. 4565
Author(s):  
Maria Panfilova ◽  
Vladimir Karaev

The algorithm to retrieve wind speed in a wide swath from the normalized radar cross section (NRCS) was developed for the data of Dual Frequency Precipitation Radar (DPR) operating in scanning mode installed onboard a Global Precipitation Measurement (GPM) satellite. The data for Ku-band radar were used. Equivalent NRCS values at nadir were estimated in a wide swath under the geometrical optics approximation from off-nadir observations. Using these equivalent NRCS nadir values and the sea buoys data, the new parameterization of dependence between NRCS at nadir and the wind speed was obtained. The algorithm was validated using ASCAT (Advanced Scatterometer) data and revealed good accuracy. DPR data are promising for determining wind speed in coastal areas.


2021 ◽  
Author(s):  
Kamil Mroz ◽  
Mario Montopoli ◽  
Giulia Panegrossi ◽  
Luca Baldini ◽  
Alessandro Battaglia ◽  
...  

<p>In this talk, surface snowfall rate estimates from the Global Precipitation Measurement (GPM) mission’s Core Observatory sensors and the CloudSat radar are compared to those from the Multi-Radar Multi-Sensor (MRMS) radar composite product over the continental United States. The analysis spans a period between Nov. 2014 and Sept. 2020 and covers the following products: the Dual-Frequency Precipitation Radar product (2A.GPM.DPR) and its single frequency counterparts (2A.GPM.Ka, 2A.GPM.Ku); GPM Combined Radar Radiometer Algorithm (2B.GPM.DPRGMI.CORRA); the CloudSat Snow Profile product (2C-SNOW-PROFILE) and two passive microwave retrievals i.e. the Goddard PROFiling algorithm (2A.GPM.GMI.GPROF) and the Snow retrievaL ALgorithm fOr gMi (SLALOM). </p><p>The 2C-SNOW product has the highest Heidke Skill Score (HSS=75%) for detecting snowfall among all the analysed products. SLALOM ranks the second (60%) while the Ka-band products falls at the end of the spectrum, with the HSS of 10% only. Low detection capabilities of the DPR products are a result of its low sensitivity. All the GPM retrievals underestimate not only the snow occurances but also snowfall volumes. Underestimation by a factor of two is present for all the GPM products compared to MRMS data. Large discrepancies (RMSE of 0.7 to 1.5 mm/h) between space-borne and ground-based snowfall rate estimates can be attributed to the complexity of ice scattering properties and differences in the algorithms' assumptions.</p>


2020 ◽  
Vol 59 (7) ◽  
pp. 1195-1215
Author(s):  
Ruiyao Chen ◽  
Ralf Bennartz

AbstractThe sensitivity of microwave brightness temperatures (TBs) to hydrometeors at frequencies between 89 and 190 GHz is investigated by comparing Fengyun-3C (FY-3C) Microwave Humidity Sounder-2 (MWHS-2) measurements with radar reflectivity profiles and retrieved products from the Global Precipitation Measurement mission’s Dual-Frequency Precipitation Radar (DPR). Scattering-induced TB depressions (ΔTBs), calculated by subtracting simulated cloud-free TBs from bias-corrected observed TBs for each channel, are compared with DPR-retrieved hydrometeor water path (HWP) and vertically integrated radar reflectivity ZINT. We also account for the number of hydrometeors actually visible in each MWHS-2 channel by weighting HWP with the channel’s cloud-free gas transmission profile and the observation slant path. We denote these transmission-weighted, slant-path-integrated quantities with a superscript asterisk (e.g., HWP*). The so-derived linear sensitivity of ΔTB with respect to HWP* increases with frequency roughly to the power of 1.78. A retrieved HWP* of 1 kg m−2 at 89 GHz on average corresponds to a decrease in observed TB, relative to a cloud-free background, of 11 K. At 183 GHz, the decrease is about 34–53 K. We perform a similar analysis using the vertically integrated, transmission-weighted slant-path radar reflectivity and find that ΔTB also decreases approximately linearly with . The exponent of 0.58 corresponds to the one we find in the purely DPR-retrieval-based ZINT–HWP relation. The observed sensitivities of ΔTB with respect to and HWP* allow for the validation of hydrometeor scattering models.


2019 ◽  
Vol 58 (7) ◽  
pp. 1429-1448 ◽  
Author(s):  
Gail Skofronick-Jackson ◽  
Mark Kulie ◽  
Lisa Milani ◽  
Stephen J. Munchak ◽  
Norman B. Wood ◽  
...  

AbstractRetrievals of falling snow from space-based observations represent key inputs for understanding and linking Earth’s atmospheric, hydrological, and energy cycles. This work quantifies and investigates causes of differences among the first stable falling snow retrieval products from the Global Precipitation Measurement (GPM) Core Observatory satellite and CloudSat’s Cloud Profiling Radar (CPR) falling snow product. An important part of this analysis details the challenges associated with comparing the various GPM and CloudSat snow estimates arising from different snow–rain classification methods, orbits, resolutions, sampling, instrument specifications, and algorithm assumptions. After equalizing snow–rain classification methodologies and limiting latitudinal extent, CPR observes nearly 10 (3) times the occurrence (accumulation) of falling snow as GPM’s Dual-Frequency Precipitation Radar (DPR). The occurrence disparity is substantially reduced if CloudSat pixels are averaged to simulate DPR radar pixels and CPR observations are truncated below the 8-dBZ reflectivity threshold. However, even though the truncated CPR- and DPR-based data have similar falling snow occurrences, average snowfall rate from the truncated CPR record remains significantly higher (43%) than the DPR, indicating that retrieval assumptions (microphysics and snow scattering properties) are quite different. Diagnostic reflectivity (Z)–snow rate (S) relationships were therefore developed at Ku and W band using the same snow scattering properties and particle size distributions in a final effort to minimize algorithm differences. CPR–DPR snowfall amount differences were reduced to ~16% after adopting this diagnostic Z–S approach.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1260 ◽  
Author(s):  
Zuhang Wu ◽  
Yun Zhang ◽  
Lifeng Zhang ◽  
Xiaolong Hao ◽  
Hengchi Lei ◽  
...  

In this study, we evaluated the performance of rain-retrieval algorithms for the Version 6 Global Precipitation Measurement Dual-frequency Precipitation Radar (GPM DPR) products, against disdrometer observations and improved their retrieval algorithms by using a revised shape parameter µ derived from long-term Particle Size Velocity (Parsivel) disdrometer observations in Jianghuai region from 2014 to 2018. To obtain the optimized shape parameter, raindrop size distribution (DSD) characteristics of summer and winter seasons over Jianghuai region are analyzed, in terms of six rain rate classes and two rain categories (convective and stratiform). The results suggest that the GPM DPR may have better performance for winter rain than summer rain over Jianghuai region with biases of 40% (80%) in winter (summer). The retrieval errors of rain category-based µ (3–5%) were proved to be the smallest in comparison with rain rate-based µ (11–13%) or a constant µ (20–22%) in rain-retrieval algorithms, with a possible application to rainfall estimations over Jianghuai region. Empirical Dm–Ze and Nw–Dm relationships were also derived preliminarily to improve the GPM rainfall estimates over Jianghuai region.


Sign in / Sign up

Export Citation Format

Share Document