Ship Detection in Large-Scale SAR Images Via Spatial Shuffle-Group Enhance Attention

Author(s):  
Zongyong Cui ◽  
Xiaoya Wang ◽  
Nengyuan Liu ◽  
Zongjie Cao ◽  
Jianyu Yang
2021 ◽  
Author(s):  
Limin Zhang ◽  
Yingjian Liu ◽  
Qingxiang Guo ◽  
Haoyu Yin ◽  
Yue Li ◽  
...  

2020 ◽  
Vol 12 (18) ◽  
pp. 2997 ◽  
Author(s):  
Tianwen Zhang ◽  
Xiaoling Zhang ◽  
Xiao Ke ◽  
Xu Zhan ◽  
Jun Shi ◽  
...  

Ship detection in synthetic aperture radar (SAR) images is becoming a research hotspot. In recent years, as the rise of artificial intelligence, deep learning has almost dominated SAR ship detection community for its higher accuracy, faster speed, less human intervention, etc. However, today, there is still a lack of a reliable deep learning SAR ship detection dataset that can meet the practical migration application of ship detection in large-scene space-borne SAR images. Thus, to solve this problem, this paper releases a Large-Scale SAR Ship Detection Dataset-v1.0 (LS-SSDD-v1.0) from Sentinel-1, for small ship detection under large-scale backgrounds. LS-SSDD-v1.0 contains 15 large-scale SAR images whose ground truths are correctly labeled by SAR experts by drawing support from the Automatic Identification System (AIS) and Google Earth. To facilitate network training, the large-scale images are directly cut into 9000 sub-images without bells and whistles, providing convenience for subsequent detection result presentation in large-scale SAR images. Notably, LS-SSDD-v1.0 has five advantages: (1) large-scale backgrounds, (2) small ship detection, (3) abundant pure backgrounds, (4) fully automatic detection flow, and (5) numerous and standardized research baselines. Last but not least, combined with the advantage of abundant pure backgrounds, we also propose a Pure Background Hybrid Training mechanism (PBHT-mechanism) to suppress false alarms of land in large-scale SAR images. Experimental results of ablation study can verify the effectiveness of the PBHT-mechanism. LS-SSDD-v1.0 can inspire related scholars to make extensive research into SAR ship detection methods with engineering application value, which is conducive to the progress of SAR intelligent interpretation technology.


2021 ◽  
Vol 13 (13) ◽  
pp. 2558
Author(s):  
Lei Yu ◽  
Haoyu Wu ◽  
Zhi Zhong ◽  
Liying Zheng ◽  
Qiuyue Deng ◽  
...  

Synthetic aperture radar (SAR) is an active earth observation system with a certain surface penetration capability and can be employed to observations all-day and all-weather. Ship detection using SAR is of great significance to maritime safety and port management. With the wide application of in-depth learning in ordinary images and good results, an increasing number of detection algorithms began entering the field of remote sensing images. SAR image has the characteristics of small targets, high noise, and sparse targets. Two-stage detection methods, such as faster regions with convolution neural network (Faster RCNN), have good results when applied to ship target detection based on the SAR graph, but their efficiency is low and their structure requires many computing resources, so they are not suitable for real-time detection. One-stage target detection methods, such as single shot multibox detector (SSD), make up for the shortage of the two-stage algorithm in speed but lack effective use of information from different layers, so it is not as good as the two-stage algorithm in small target detection. We propose the two-way convolution network (TWC-Net) based on a two-way convolution structure and use multiscale feature mapping to process SAR images. The two-way convolution module can effectively extract the feature from SAR images, and the multiscale mapping module can effectively process shallow and deep feature information. TWC-Net can avoid the loss of small target information during the feature extraction, while guaranteeing good perception of a large target by the deep feature map. We tested the performance of our proposed method using a common SAR ship dataset SSDD. The experimental results show that our proposed method has a higher recall rate and precision, and the F-Measure is 93.32%. It has smaller parameters and memory consumption than other methods and is superior to other methods.


Author(s):  
Mohammad Alkhaleefah ◽  
Shang-Chih Ma ◽  
Tan-Hsu Tan ◽  
Lena Chang ◽  
Kuan Wang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document