small ship
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 30)

H-INDEX

5
(FIVE YEARS 3)

2021 ◽  
Vol 158 (A2) ◽  
Author(s):  
A Kilic

Measurement of NOx emissions from small ship diesel engines is technically quite complex and at most times it is very difficult or impossible to perform on board. Hence, there is need to build and model an applicable measurement and certification system compliant with NOx measurement rules of NOx Technical Code. The system needs to perform efficiently, economically and also need to have adequate elasticity for ships that cannot meet NOx criteria in order to fulfil the requirements of the Code. The aim of this study is the formation of a technical and legislative infrastructure about safe and efficient measurement and certification of NOx emissions of main and auxiliary engine in the Merchant ships, in accordance with Regulation 13 and NOx Technical Code related to the control of nitrogen oxides (NOx) and which takes place in Annex VI appendix about prevention of air pollution caused by ships in MARPOL 73/78 Convention.


2021 ◽  
Vol 13 (23) ◽  
pp. 4851
Author(s):  
Munhyeong Kim ◽  
Jongmin Jeong ◽  
Sungho Kim

Detection of small targets in aerial images is still a difficult problem due to the low resolution and background-like targets. With the recent development of object detection technology, efficient and high-performance detector techniques have been developed. Among them, the YOLO series is a representative method of object detection that is light and has good performance. In this paper, we propose a method to improve the performance of small target detection in aerial images by modifying YOLOv5. The backbone is was modified by applying the first efficient channel attention module, and the channel attention pyramid method was proposed. We propose an efficient channel attention pyramid YOLO (ECAP-YOLO). Second, in order to optimize the detection of small objects, we eliminated the module for detecting large objects and added a detect layer to find smaller objects, reducing the computing power used for detecting small targets and improving the detection rate. Finally, we use transposed convolution instead of upsampling. Comparing the method proposed in this paper to the original YOLOv5, the performance improvement for the mAP was 6.9% when using the VEDAI dataset, 5.4% when detecting small cars in the xView dataset, 2.7% when detecting small vehicle and small ship classes from the DOTA dataset, and approximately 2.4% when finding small cars in the Arirang dataset.


2021 ◽  
Vol 13 (18) ◽  
pp. 3690
Author(s):  
Tianwen Zhang ◽  
Xiaoling Zhang ◽  
Jianwei Li ◽  
Xiaowo Xu ◽  
Baoyou Wang ◽  
...  

SAR Ship Detection Dataset (SSDD) is the first open dataset that is widely used to research state-of-the-art technology of ship detection from Synthetic Aperture Radar (SAR) imagery based on deep learning (DL). According to our investigation, up to 46.59% of the total 161 public reports confidently select SSDD to study DL-based SAR ship detection. Undoubtedly, this situation reveals the popularity and great influence of SSDD in the SAR remote sensing community. Nevertheless, the coarse annotations and ambiguous standards of use of its initial version both hinder fair methodological comparisons and effective academic exchanges. Additionally, its single-function horizontal-vertical rectangle bounding box (BBox) labels can no longer satisfy the current research needs of the rotatable bounding box (RBox) task and the pixel-level polygon segmentation task. Therefore, to address the above two dilemmas, in this review, advocated by the publisher of SSDD, we will make an official release of SSDD based on its initial version. SSDD’s official release version will cover three types: (1) a bounding box SSDD (BBox-SSDD), (2) a rotatable bounding box SSDD (RBox-SSDD), and (3) a polygon segmentation SSDD (PSeg-SSDD). We relabel ships in SSDD more carefully and finely, and then explicitly formulate some strict using standards, e.g., (1) the training-test division determination, (2) the inshore-offshore protocol, (3) the ship-size reasonable definition, (4) the determination of the densely distributed small ship samples, and (5) the determination of the densely parallel berthing at ports ship samples. These using standards are all formulated objectively based on the using differences of existing 75 (161 × 46.59%) public reports. They will be beneficial for fair method comparison and effective academic exchanges in the future. Most notably, we conduct a comprehensive data analysis on BBox-SSDD, RBox-SSDD, and PSeg-SSDD. Our analysis results can provide some valuable suggestions for possible future scholars to further elaborately design DL-based SAR ship detectors with higher accuracy and stronger robustness when using SSDD.


2021 ◽  
Vol 13 (16) ◽  
pp. 3059
Author(s):  
Jianming Hu ◽  
Xiyang Zhi ◽  
Tianjun Shi ◽  
Wei Zhang ◽  
Yang Cui ◽  
...  

The YOLO network has been extensively employed in the field of ship detection in optical images. However, the YOLO model rarely considers the global and local relationships in the input image, which limits the final target prediction performance to a certain extent, especially for small ship targets. To address this problem, we propose a novel small ship detection method, which improves the detection accuracy compared with the YOLO-based network architecture and does not increase the amount of computation significantly. Specifically, attention mechanisms in spatial and channel dimensions are proposed to adaptively assign the importance of features in different scales. Moreover, in order to improve the training efficiency and detection accuracy, a new loss function is employed to constrain the detection step, which enables the detector to learn the shape of the ship target more efficiently. The experimental results on a public and high-quality ship dataset indicate that our method realizes state-of-the-art performance in comparison with several widely used advanced approaches.


2021 ◽  
Vol 13 (14) ◽  
pp. 2771
Author(s):  
Tianwen Zhang ◽  
Xiaoling Zhang ◽  
Xiao Ke

Ship detection from synthetic aperture radar (SAR) imagery is a fundamental and significant marine mission. It plays an important role in marine traffic control, marine fishery management, and marine rescue. Nevertheless, there are still some challenges hindering accuracy improvements of SAR ship detection, e.g., complex background interferences, multi-scale ship feature differences, and indistinctive small ship features. Therefore, to address these problems, a novel quad feature pyramid network (Quad-FPN) is proposed for SAR ship detection in this paper. Quad-FPN consists of four unique FPNs, i.e., a DEformable COnvolutional FPN (DE-CO-FPN), a Content-Aware Feature Reassembly FPN (CA-FR-FPN), a Path Aggregation Space Attention FPN (PA-SA-FPN), and a Balance Scale Global Attention FPN (BS-GA-FPN). To confirm the effectiveness of each FPN, extensive ablation studies are conducted. We conduct experiments on five open SAR ship detection datasets, i.e., SAR ship detection dataset (SSDD), Gaofen-SSDD, Sentinel-SSDD, SAR-Ship-Dataset, and high-resolution SAR images dataset (HRSID). Qualitative and quantitative experimental results jointly reveal Quad-FPN’s optimal SAR ship detection performance compared with the other 12 competitive state-of-the-art convolutional neural network (CNN)-based SAR ship detectors. To confirm the excellent migration application capability of Quad-FPN, the actual ship detection in another two large-scene Sentinel-1 SAR images is conducted. Their satisfactory detection results indicate the practical application value of Quad-FPN in marine surveillance.


Sign in / Sign up

Export Citation Format

Share Document