scholarly journals TWC-Net: A SAR Ship Detection Using Two-Way Convolution and Multiscale Feature Mapping

2021 ◽  
Vol 13 (13) ◽  
pp. 2558
Author(s):  
Lei Yu ◽  
Haoyu Wu ◽  
Zhi Zhong ◽  
Liying Zheng ◽  
Qiuyue Deng ◽  
...  

Synthetic aperture radar (SAR) is an active earth observation system with a certain surface penetration capability and can be employed to observations all-day and all-weather. Ship detection using SAR is of great significance to maritime safety and port management. With the wide application of in-depth learning in ordinary images and good results, an increasing number of detection algorithms began entering the field of remote sensing images. SAR image has the characteristics of small targets, high noise, and sparse targets. Two-stage detection methods, such as faster regions with convolution neural network (Faster RCNN), have good results when applied to ship target detection based on the SAR graph, but their efficiency is low and their structure requires many computing resources, so they are not suitable for real-time detection. One-stage target detection methods, such as single shot multibox detector (SSD), make up for the shortage of the two-stage algorithm in speed but lack effective use of information from different layers, so it is not as good as the two-stage algorithm in small target detection. We propose the two-way convolution network (TWC-Net) based on a two-way convolution structure and use multiscale feature mapping to process SAR images. The two-way convolution module can effectively extract the feature from SAR images, and the multiscale mapping module can effectively process shallow and deep feature information. TWC-Net can avoid the loss of small target information during the feature extraction, while guaranteeing good perception of a large target by the deep feature map. We tested the performance of our proposed method using a common SAR ship dataset SSDD. The experimental results show that our proposed method has a higher recall rate and precision, and the F-Measure is 93.32%. It has smaller parameters and memory consumption than other methods and is superior to other methods.

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2851 ◽  
Author(s):  
Jizhou Wang ◽  
Changhua Lu ◽  
Weiwei Jiang

Ship detection and angle estimation in SAR images play an important role in marine surveillance. Previous works have detected ships first and estimated their orientations second. This is time-consuming and tedious. In order to solve the problems above, we attempt to combine these two tasks using a convolutional neural network so that ships may be detected and their orientations estimated simultaneously. The proposed method is based on the original SSD (Single Shot Detector), but using a rotatable bounding box. This method can learn and predict the class, location, and angle information of ships using only one forward computation. The generated oriented bounding box is much tighter than the traditional bounding box and is robust to background disturbances. We develop a semantic aggregation method which fuses features in a top-down way. This method can provide abundant location and semantic information, which is helpful for classification and location. We adopt the attention module for the six prediction layers. It can adaptively select meaningful features and neglect weak ones. This is helpful for detecting small ships. Multi-orientation anchors are designed with different sizes, aspect ratios, and orientations. These can consider both speed and accuracy. Angular regression is embedded into the existing bounding box regression module, and thus the angle prediction is output with the position and score, without requiring too many extra computations. The loss function with angular regression is used for optimizing the model. AAP (average angle precision) is used for evaluating the performance. The experiments on the dataset demonstrate the effectiveness of our method.


Author(s):  
Haomiao Liu ◽  
Haizhou Xu ◽  
Lei Zhang ◽  
Weigang Lu ◽  
Fei Yang ◽  
...  

Maritime ship monitoring plays an important role in maritime transportation. Fast and accurate detection of maritime ship is the key to maritime ship monitoring. The main sources of marine ship images are optical images and synthetic aperture radar (SAR) images. Different from natural images, SAR images are independent to daylight and weather conditions. Traditional ship detection methods of SAR images mainly depend on the statistical distribution of sea clutter, which leads to poor robustness. As a deep learning detector, RetinaNet can break this obstacle, and the problem of imbalance on feature level and objective level can be further solved by combining with Libra R-CNN algorithm. In this paper, we modify the feature fusion part of Libra RetinaNet by adding a bottom-up path augmentation structure to better preserve the low-level feature information, and we expand the dataset through style transfer. We evaluate our method on the publicly available SAR dataset of ship detection with complex backgrounds. The experimental results show that the improved Libra RetinaNet can effectively detect multi-scale ships through expansion of the dataset, with an average accuracy of 97.38%.


2019 ◽  
Vol 11 (7) ◽  
pp. 786 ◽  
Author(s):  
Yang-Lang Chang ◽  
Amare Anagaw ◽  
Lena Chang ◽  
Yi Wang ◽  
Chih-Yu Hsiao ◽  
...  

Synthetic aperture radar (SAR) imagery has been used as a promising data source for monitoring maritime activities, and its application for oil and ship detection has been the focus of many previous research studies. Many object detection methods ranging from traditional to deep learning approaches have been proposed. However, majority of them are computationally intensive and have accuracy problems. The huge volume of the remote sensing data also brings a challenge for real time object detection. To mitigate this problem a high performance computing (HPC) method has been proposed to accelerate SAR imagery analysis, utilizing the GPU based computing methods. In this paper, we propose an enhanced GPU based deep learning method to detect ship from the SAR images. The You Only Look Once version 2 (YOLOv2) deep learning framework is proposed to model the architecture and training the model. YOLOv2 is a state-of-the-art real-time object detection system, which outperforms Faster Region-Based Convolutional Network (Faster R-CNN) and Single Shot Multibox Detector (SSD) methods. Additionally, in order to reduce computational time with relatively competitive detection accuracy, we develop a new architecture with less number of layers called YOLOv2-reduced. In the experiment, we use two types of datasets: A SAR ship detection dataset (SSDD) dataset and a Diversified SAR Ship Detection Dataset (DSSDD). These two datasets were used for training and testing purposes. YOLOv2 test results showed an increase in accuracy of ship detection as well as a noticeable reduction in computational time compared to Faster R-CNN. From the experimental results, the proposed YOLOv2 architecture achieves an accuracy of 90.05% and 89.13% on the SSDD and DSSDD datasets respectively. The proposed YOLOv2-reduced architecture has a similarly competent detection performance as YOLOv2, but with less computational time on a NVIDIA TITAN X GPU. The experimental results shows that the deep learning can make a big leap forward in improving the performance of SAR image ship detection.


2019 ◽  
Vol 11 (5) ◽  
pp. 526 ◽  
Author(s):  
Nengyuan Liu ◽  
Zongjie Cao ◽  
Zongyong Cui ◽  
Yiming Pi ◽  
Sihang Dang

The classic ship detection methods in synthetic aperture radar (SAR) images suffer from an extreme variance of ship scale. Generating a set of ship proposals before detection operation can effectively alleviate the multi-scale problem. In order to construct a scale-independent proposal generator for SAR images, we suggest four characteristics of ships in SAR images and the corresponding four procedures in this paper. Based on these characteristics and procedures, we put forward a framework to explore multi-scale ship proposals. The designed framework mainly contains two stages: hierarchical grouping and proposal scoring. Firstly, we extract edges, superpixels and strong scattering components from SAR images. The ship proposals are obtained at hierarchical grouping stage by combining the strong scattering components with superpixel grouping. Considering the difference of edge density and the completeness and tightness of contour, we obtain the scores to measure the confidence that a proposal contains a ship. Finally, the ranking proposals are obtained. Extensive experiments demonstrate the effectiveness of the four procedures. Our method achieves 0.70 the average best overlap (ABO) score, 0.59 the area under the curve (AUC) score and 0.85 best recall on a challenging dataset. In addition, the recall of our method on three scale subsets are all above 0.80. Experimental results demonstrate that our algorithm outperforms the approaches previously used for SAR images.


Author(s):  
Songjie Wei ◽  
Pengfei Jiang ◽  
Qiuzhuang Yuan ◽  
Meilin Liu

Synthetic aperture radar(SAR) ship target detection plays an increasingly important role in marine monitoring. Aimed at the problems of recognizing small size of ship targets in SAR images and the inability of traditional methods to extract fine target features due to external disturbances, we propose an improved SAR small target detection model based on the deep learning technology. The proposed model mainly consists of two parts:region proposal network(RPN) and object detection network. Firstly, a CNN model is designed and trained to accurately identify small ship targets. Then, the model is used to initialize the parameters of the shared feature extraction layer. Last, we train the proposed object detection model using a self-collected Sentinel-1 SAR small target dataset. The experimental results show that the proposed target detection model has better detection and recognition performance and anti-interference ability for small ship scalable targets in SAR images, and has certain reference value for the research of small target detection in SAR images.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Liming Zhou ◽  
Chang Zheng ◽  
Haoxin Yan ◽  
Xianyu Zuo ◽  
Baojun Qiao ◽  
...  

Target detection in remote sensing images is very challenging research. Followed by the recent development of deep learning, the target detection algorithm has obtained large and fast growth. However, in the application of remote sensing images, due to the small target, wide range, small texture, and complex background, the existing target detection methods cannot achieve people’s hope. In this paper, a target detection algorithm named IR-PANet for remote sensing images of an automobile is proposed. In the backbone network CSPDarknet53, SPP is used to strengthen the learning content. Then, IR-PANet is used as the neck network. After the upper sampling, depthwise separable convolution is used to greatly avoid the lack of small target feature information in the convolution of the shallow network and increase the semantic information in the high-level network. Finally, Gamma correction is used to preprocess the image before image training, which effectively reduces the interference of shadow and other factors on training. The experiment proves that the method has a better effect on small targets obscured by shadows and under the color similar to the background of the picture, and the accuracy is significantly improved based on the original algorithm.


Sign in / Sign up

Export Citation Format

Share Document