Influence of Rotor Damping Structures on Damping Torque Coefficient of Turbo-Generator During Low-Frequency Oscillation Caused by Large Disturbance

Author(s):  
Guorui Xu ◽  
Jingdi Zhou ◽  
Zhiqiang Li ◽  
Yang Zhan ◽  
Haisen Zhao ◽  
...  
2021 ◽  
Vol 2087 (1) ◽  
pp. 012001
Author(s):  
Wei Yan ◽  
Yunbang Sun

Abstract In the actual power system with hydropower, long-time and ultra-low frequency oscillation events occur many times. It is found that the unreasonable setting of governor parameters is an important reason for the oscillation. Firstly, the single machine on load system model is used to analyse the relationship between the PID parameters of the governor and the system stability, then the relationship between oscillation mode and PID parameters of governor is analyzed by eigenvalue analysis method, and the negative damping provided by speed regulation system is analyzed by damping torque method, and then the particle swarm optimization algorithm is used to optimize the PID parameters. Through the analysis of the step response of the single machine system before and after the optimization and the damping torque coefficient provided by the speed regulation system, it shows the effectiveness of the optimization algorithm. Finally, in the simulation platform MATLAB/SIMULINK, a single machine load system model which is closer to the actual power grid is built. The governor parameters of the generator are simulated and verified, and the PID parameters are adjusted by using the parameters obtained by the optimization algorithm. The results show that the optimized parameters have a good suppression for the ultra-low frequency oscillation.


2013 ◽  
Vol 575-576 ◽  
pp. 504-509
Author(s):  
Ang Li

With the continuous spreading of scale in power system and introducing of fast excitation system, the problem of low frequency oscillation which is arosed because of lacking-damping becomes worse and worse. This paper analyzes the mechanism reasons of insufficient-damping, using an auxiliary control unitpower system stabilizer (PSS) to increase the damping torque. Through established a simulation model of excitation control system on a typical single machine-infinite bus system, simulates the synchronous generators transient operating characteristics under large and small disturbances, and the simulation results show that the design can improve the system damping and the generator operating characteristics, increase power system dynamic stability.


Vacuum ◽  
2021 ◽  
pp. 110320
Author(s):  
Tianyuan Ji ◽  
Liqiu Wei ◽  
Haifeng Lu ◽  
Shangmin Wang ◽  
Ning Guo ◽  
...  

Author(s):  
Minglu Chen ◽  
Shan Huang ◽  
Nigel Baltrop ◽  
Ji Chunyan ◽  
Liangbi Li

Mooring line damping plays an important role to the body motion of moored floating platforms. Meanwhile, it can also make contributions to optimize the mooring line system. Accurate assessment of mooring line damping is thus an essential issue for offshore structure design. However, it is difficult to determine the mooring line damping based on theoretical methods. This study considers the parameters which have impact on mooring-induced damping. In the paper, applying Morison formula to calculate the drag and initial force on the mooring line, its dynamic response is computed in the time domain. The energy dissipation of the mooring line due to the viscosity was used to calculate mooring-induced damping. A mooring line is performed with low-frequency oscillation only, the low-frequency oscillation superimposed with regular and irregular wave-frequency motions. In addition, the influences of current velocity, mooring line pretension and different water depths are taken into account.


Sign in / Sign up

Export Citation Format

Share Document