Torque Ripple Reduction of the Torque Predictive Control Scheme for Permanent-Magnet Synchronous Motors

2012 ◽  
Vol 59 (2) ◽  
pp. 871-877 ◽  
Author(s):  
Hao Zhu ◽  
Xi Xiao ◽  
Yongdong Li
Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1413
Author(s):  
Hyungkwan Jang ◽  
Hyunwoo Kim ◽  
Huai-Cong Liu ◽  
Ho-Joon Lee ◽  
Ju Lee

Owing to the development of electric vehicles (EVs), research and development are underway to minimize torque ripple in relation to vibration and noise in EV motors. Although there are various ways to reduce torque ripple, this study analyzes the torque ripple, cogging torque, total harmonic distortion (THD), and magnetic flux density distribution for the three rotor shapes of interior permanent magnet synchronous motors, which are widely employed in EVs. To reduce the torque ripple while retaining the required average torque, the barrier shape is optimized, and wedge skew is applied. First, regarding the rotor barrier shape, torque ripple is primarily reduced by designing the rotor barrier shape with the response surface method, which is an experimental design method. Additionally, the wedge skew shape considering the bidirectional rotation and fabrication was applied to the stator shoe as a step and analyzed using three-dimensional finite element analysis. When designing the wedge skew, the layer subdivision according to the axial length, wedge skew diameter, and wedge skew position was analyzed and improved. The torque ripple reduction method in this paper can be applied not only to motors for EVs or Hybrid EVs (HEVs) but also all types of permanent magnet synchronous motors.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3549
Author(s):  
Pham Quoc Khanh ◽  
Viet-Anh Truong ◽  
Ho Pham Huy Anh

The paper proposes a new speed control method to improve control quality and expand the Permanent Magnet Synchronous Motors speed range. The Permanent Magnet Synchronous Motors (PMSM) speed range enlarging is based on the newly proposed power control principle between two voltage sources instead of winding current control as the conventional Field Oriented Control method. The power management between the inverter and PMSM motor allows the Flux-Weakening obstacle to be overcome entirely, leading to a significant extension of the motor speed to a constant power range. Based on motor power control, a new control method is proposed and allows for efficiently reducing current and torque ripple caused by the imbalance between the power supply of the inverter and the power required through the desired stator current. The proposed method permits for not only an enhanced PMSM speed range, but also a robust stability in PMSM speed control. The simulation results have demonstrated the efficiency and stability of the proposed control method.


Sign in / Sign up

Export Citation Format

Share Document