scholarly journals Extended Permanent Magnet Synchronous Motors Speed Range Based on the Active and Reactive Power Control of Inverters

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3549
Author(s):  
Pham Quoc Khanh ◽  
Viet-Anh Truong ◽  
Ho Pham Huy Anh

The paper proposes a new speed control method to improve control quality and expand the Permanent Magnet Synchronous Motors speed range. The Permanent Magnet Synchronous Motors (PMSM) speed range enlarging is based on the newly proposed power control principle between two voltage sources instead of winding current control as the conventional Field Oriented Control method. The power management between the inverter and PMSM motor allows the Flux-Weakening obstacle to be overcome entirely, leading to a significant extension of the motor speed to a constant power range. Based on motor power control, a new control method is proposed and allows for efficiently reducing current and torque ripple caused by the imbalance between the power supply of the inverter and the power required through the desired stator current. The proposed method permits for not only an enhanced PMSM speed range, but also a robust stability in PMSM speed control. The simulation results have demonstrated the efficiency and stability of the proposed control method.

Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1216
Author(s):  
Adile Akpunar ◽  
Serdar Iplikci

Permanent magnet synchronous motors (PMSMs) have commonly been used in a wide spectrum ranging from industry to home appliances because of their advantages over their conventional counterparts. However, PMSMs are multiple-input multiple-output (MIMO) systems with nonlinear dynamics, which makes their control relatively difficult. In this study, a novel model predictive control mechanism, which is referred to as the Runge-Kutta model predictive control (RKMPC), has been applied for speed control of a commercial permanent magnet synchronous motor. Furthermore, the RKMPC method has been utilized for the adaptation of the speed of the motor under load variations via RKMPC-based online parameter estimation. The superiority of RKMPC is that it can take the constraints on the inputs and outputs of the system into consideration, thereby handling the speed and current control in a single loop. It has been shown in the study that the RKMPC mechanism can also estimate the load changes and unknown load disturbances to eliminate their undesired effects for a desirable control accuracy. The performance of the employed mechanism has been tested on a 0.4 kW PMSM motor experimentally for different conditions and compared to the conventional Proportional Integral (PI) method. The tests have shown the efficiency of RKMPC for PMSMs.


Sign in / Sign up

Export Citation Format

Share Document