Electrical and Thermal Effects of Light-Emitting Diodes on Signal-to-Noise Ratio in Visible Light Communication

2019 ◽  
Vol 66 (4) ◽  
pp. 2785-2794
Author(s):  
Huanting Chen ◽  
Albert T. L. Lee ◽  
Siew-Chong Tan ◽  
S. Y. Hui
Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1713
Author(s):  
Hyunwoo Jung ◽  
Sung-Man Kim

We experimentally demonstrated full-duplex light-emitting diode (LED)-to-LED visible light communication (VLC) using LEDs as the transmitter and receiver. Firstly, we investigated the performance dependency on the wavelengths of the LED transmitter and receiver by measuring the rise time and signal-to-noise ratio (SNR). Through the investigation, we were able to choose the optimal LED color set for LED-to-LED VLC using Shannon’s channel capacity law. The bit error rate (BER) results of full-duplex and half-duplex LED-to-LED VLC systems with the optimal LED sets are shown to compare the performance. Furthermore, we discuss major distortions and signal losses in the full-duplex LED-to-LED VLC system.


2020 ◽  
Vol 12 (21) ◽  
pp. 9006
Author(s):  
Xiangyang Zhang ◽  
Nan Zhao ◽  
Fadi Al-Turjman ◽  
Muhammad Bilal Khan ◽  
Xiaodong Yang

For an actual visible light communication system, it is necessary to consider the uniformity of indoor illumination. Most of the existing optimization schemes, however, do not consider the effect of the first reflected light, and do not conform to the practical application conventions, which increases the actual cost and the complexity of system construction. In this paper, considering the first reflected light and based on the conventional layout model and the classic indoor visible light communication model, a scheme using the parameter Q to determine the optimal layout of channel quality is proposed. We determined the layout, and then carried out a simulation. For comparison, the normal layout and the optimal layout of illumination were also simulated. The simulation results show that the illuminance distributions of the three layouts meet the standards of the International Organization for Standardization. The optimal layout of channel quality in the signal-to-noise ratio distribution, maximum delay spread distribution, and impulse response is obviously better than the optimal layout of illumination. In particular, the effective area percentage of the optimal layout of channel quality is increased by 0.32% and 6.08% to 88.80% as compared with the normal layout’s 88.48% and the optimal layout of illumination’s 82.72%. However, compared with the normal layout, the advantages are not very prominent.


2020 ◽  
Vol 53 (35) ◽  
pp. 355103 ◽  
Author(s):  
Huamao Huang ◽  
Haocheng Wu ◽  
Cheng Huang ◽  
Tianxiang Lan ◽  
Qingyuan Han ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document