Multibranch and Multiscale CNN for Fault Diagnosis of Wheelset Bearings Under Strong Noise and Variable Load Condition

2020 ◽  
Vol 16 (7) ◽  
pp. 4949-4960 ◽  
Author(s):  
Dandan Peng ◽  
Huan Wang ◽  
Zhiliang Liu ◽  
Wei Zhang ◽  
Ming J. Zuo ◽  
...  
Author(s):  
mohammadreza ghorvei ◽  
mohammadreza kavianpor ◽  
mohammad taghi beheshti ◽  
Amin Ramezani

Abstract Deep learning-based approaches for diagnosing bearing faults have attracted considerable attention in the last years. However, in real-world applications, these methods face challenges. For proper training of these models, a considerable amount of labeled data are necessary, and due to limitations in industry, obtaining this amount of data may not be possible. Because of load variations, the distribution of training and test data may vary, which reduces the accuracy of the trained model for various working conditions. Furthermore, noise has a significant impact on bearing fault diagnosis performance in real-world industrial applications. This study introduced the deep subdomain adaptation convolutional neural network (DSACNN) method to overcome these challenges in real scenarios. The local maximum mean discrepancy (LMMD) method reduces the difference between each class distribution in the source and target domains. We validated our proposed method by CWRU bearing dataset under various loads and noise with different SNRs. The results show that DSACNN outperforms other comparative methods in anti-noise performance and reduction of domain’s distribution discrepancies.


Author(s):  
Jianqun Zhang ◽  
Qing Zhang ◽  
Xianrong Qin ◽  
Yuantao Sun

To identify rolling bearing faults under variable load conditions, a method named DISA-KNN is proposed in this paper, which is based on the strategy of feature extraction-domain adaptation-classification. To be specific, the time-domain and frequency-domain indicators are used for feature extraction. Discriminative and domain invariant subspace alignment (DISA) is used to minimize the data distributions’ discrepancies between the training data (source domain) and testing data (target domain). K-nearest neighbor (KNN) is applied to identify rolling bearing faults. DISA-KNN’s validation is proved by the experimental signal collected under different load conditions. The identification accuracies obtained by the DISA-KNN method are more than 90% on four datasets, including one dataset with 99.5% accuracy. The strength of the proposed method is further highlighted by comparisons with the other 8 methods. These results reveal that the proposed method is promising for the rolling bearing fault diagnosis in real rotating machinery.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 122 ◽  
Author(s):  
Xianzhong Jian ◽  
Wenlong Li ◽  
Xuguang Guo ◽  
Ruzhi Wang

Deep learning has been an important topic in fault diagnosis of motor bearings, which can avoid the need for extensive domain expertise and cumbersome artificial feature extraction. However, existing neural networks have low fault recognition rates and low adaptability under variable load conditions. In order to solve these problems, we propose a one-dimensional fusion neural network (OFNN), which combines Adaptive one-dimensional Convolution Neural Networks with Wide Kernel (ACNN-W) and Dempster-Shafer (D-S) evidence theory. Firstly, the original vibration time-domain signals of a motor bearing acquired by two sensors are resampled. Then, four frameworks of ACNN-W optimized by RMSprop are utilized to learn features adaptively and pre-classify them with Softmax classifiers. Finally, the D-S evidence theory is used to comprehensively determine the class vector output by the Softmax classifiers to achieve fault detection of the bearing. The proposed method adapts to different load conditions by incorporating complementary or conflicting evidences from different sensors through experiments on the Case Western Reserve University (CWRU) motor bearing database. Experimental results show that the proposed method can effectively enhance the cross-domain adaptive ability of the model and has a better diagnostic accuracy than other existing experimental methods.


2014 ◽  
Vol 940 ◽  
pp. 380-385 ◽  
Author(s):  
Yan Zhi Cheng ◽  
You Liang Ma ◽  
Xi Chen

The torque stability and shutdown control of electric learner-driven vehicle (ELV) in the condition of motor load suddenly changing make the ELV has the same clutch handling characteristics with the traditional vehicle, and this makes the ELV popularization possible. A special control method is put forward in this article to achieve the consistency with the mechanical properties of engine. A multiparameter control model to identify the real condition of clutch handling by driver is builded with fuzzy control law. The torque stability and shutdown control of the motor with the load raising rapidly condition are approached by the adjusting of armature voltage with PWM control law. Keywords: Electric Learner-driven Vehicle;Torque Stability;Fuzzy Control


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 99771-99781 ◽  
Author(s):  
Hongbin Tang ◽  
Wenxian Yang ◽  
Zichao Wang

Sign in / Sign up

Export Citation Format

Share Document