An Improved Key-Phase-Free Blade Tip-Timing Technique for Nonstationary Test Conditions and Its Application on Large-Scale Centrifugal Compressor Blades

2021 ◽  
Vol 70 ◽  
pp. 1-16
Author(s):  
Changbo He ◽  
Jerome Antoni ◽  
Alessandro Paolo Daga ◽  
Hongkun Li ◽  
Ning Chu ◽  
...  
2016 ◽  
Vol 250 ◽  
pp. 263-269
Author(s):  
Lucjan Witek ◽  
Arkadiusz Bednarz ◽  
Feliks Stachowicz

This work presents results of the experimental fatigue analysis of the compressor blades. In the investigations the blade with the V-notch (which simulates the foreign object damage) was considered. The notch was created by machining. The blades during the fatigue test were entered into transverse vibration. The crack propagation process was conducted in resonance conditions. During investigations both the amplitude of the blade tip displacement and also the crack length were monitored. As the results of presented investigations both the number of load cycles to crack initiation and also the crack growth dynamics in the compressor blade subjected to resonant vibrations were determined. In the work the influence of crack size on the resonant frequency was also investigated.


Author(s):  
Laura Pacyna ◽  
Alexandre Bertret ◽  
Alain Derclaye ◽  
Luc Papeleux ◽  
Jean-Philippe Ponthot

Abstract To investigate the contact phenomenon between the blade tip and the abradable coated casing, a rig test was designed and built. This rig test fills the following constraints: simplification of the low-pressure compressor environment but realistic mechanical conditions, ability to test several designs in short time, at low cost and repeatability. The rig test gives the opportunity to investigate the behavior of different blade designs regarding the sought phenomenon, to refine and mature the phenomenon comprehension and to get data for the numerical tool validation. The numerical tool considers a 3D finite elements model of low-pressure compressor blades with a surrounding rigid casing combined with a specialized model to take into account the effects of the wear of the abradable coating on the blade dynamics. Numerical results are in good agreement with tests in terms of: critical angular speed, blade dynamics and wear pattern on the abradable coated casing.


2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Teng Cao ◽  
Tadashi Kanzaka ◽  
Liping Xu ◽  
Tobias Brandvik

Abstract In this paper, an unsteady tip leakage flow phenomenon is identified and investigated in a centrifugal compressor with a vaneless diffuser at near-stall conditions. This phenomenon is associated with the inception of a rotating instability in the compressor. The study is based on numerical simulations that are supported by experimental measurements. The study confirms that the unstable flow is governed by a Kelvin–Helmholtz type instability of the shear layer formed between the main-stream flow and the tip leakage flow. The shear layer instability induces large-scale vortex roll-up and forms vortex tubes, which propagate circumferentially, resulting in measured pressure fluctuations with short wavelength and high amplitude which rotate at about half of the blade speed. The 3D vortex tube is also found to interact with the main blade leading edge, causing the reduction of the blade loading identified in the experiment. The paper also reveals that the downstream volute imposes a once-per-rev circumferential nonuniform back pressure at the impeller exit, inducing circumferential loading variation at the impeller inducer, and causing circumferential variation in the unsteady tip leakage flow.


Author(s):  
Mohammad R. Aligoodarz ◽  
Mohammad Reza Soleimani Tehrani ◽  
Hadi Karrabi ◽  
Mohammad R. Roshani

Turbo machineries including compressors performance degrades over the period of operation and deviates from design levels due to causes including dust entrance into the compressor, blades mechanical damage, erosion and corrosion. These lead to reduction in compressor performance, efficiency and pressure ratio. Subsequently gas turbine performance is affected since their operation sate is correlated. In this study the numerical investigation of common causes that determine geometric characteristics of a 2-stage centrifugal compressor running in a gas station, including blades fouling and corrosion is performed. 3D Numerical modeling is implemented along with utilization of Shear Stress Transport (SST) turbulence model and independency from the grids is verified.


2018 ◽  
Vol 2 ◽  
pp. I1RSJ3 ◽  
Author(s):  
Moritz Mosdzien ◽  
Martin Enneking ◽  
Alexander Hehn ◽  
Daniel Grates ◽  
Peter Jeschke

Due to the increasing demand for higher efficiencies of centrifugal compressors, numerical optimization methods are becoming more and more relevant in the design process. To identify the beneficial features of a numerical optimized compressor design, this paper analyses the influence of arbitrary blade surfaces on the loss generation in a transonic centrifugal compressor. The paper therefore focuses on an analysis of the secondary flow development within the impeller blade passages. To do this, steady simulations were performed on both a baseline and an optimized blade design. Two distinct design features of the optimized compressor stage were identified, which lead to a more homogenous impeller exit flow and thus to an increase in total-to-static efficiency of 1.76% points: the positive lean in the near-tip region and the positive blade curvature in the rear part of the optimized impeller. Furthermore, through extensive experimental investigations conducted on a large scale test rig it has been possible to prove the particular impeller outflow characteristics of the baseline compressor stage.


2016 ◽  
Vol 139 ◽  
pp. 810-820 ◽  
Author(s):  
Shitong Peng ◽  
Tao Li ◽  
Mengmeng Dong ◽  
Junli Shi ◽  
Hongchao Zhang

Author(s):  
Andrew H. Lerche ◽  
J. Jeffrey Moore ◽  
Nicholas M. White ◽  
James Hardin

A computational model is developed that predicts stresses in the blades of a centrifugal compressor. The blade vibrations are caused by the wakes coming off stationary inlet guide vanes upstream of the impeller, which create a periodic excitation on the impeller blades. When this excitation frequency matches the resonant frequency of the impeller blades, resonant vibration is experienced. This vibration leads to high cycle fatigue, which is a leading cause of blade failure in turbomachinery. Although much research has been performed on axial flow turbomachinery, little has been published for radial machines such as centrifugal compressors and radial inflow turbines. A time domain coupled fluid-structure computational model is developed. The model couples the codes unidirectionally, where pressures are transferred to the structural code during the transient solution, and the fluid mesh remains unaffected by the structural displacements. A Fourier analysis is performed of the resulting strains to predict both amplitude and frequency content. This modeling method was first applied to a compressor in a single stage centrifugal compressor test rig. The analysis results were then validated by experimental blade strain measurements from a rotating test. The model correlated very well with the experimental results. In this work, a model is developed for a liquefied natural gas (LNG) centrifugal compressor that experienced repeated blade failures. The model determined stress levels in the blades, which helped to predict the likely cause of failure. The method was also used to investigate design changes to improve the robustness of the impeller design.


1980 ◽  
Vol 102 (1) ◽  
pp. 88-95 ◽  
Author(s):  
D. A. Bailey

Laser-Doppler velocimetry was used to investigate the secondary flow in the endwall region of a large-scale turbine inlet-guide-vane passage. The mean and turbulent velocities were measured for three different test conditions. The different test conditions consisted of variations in the blade aspect ratio and the inlet boundary-layer thickness or all three cases, a passage vortex was identified and its development documented. The turbulent stresses within the vortex were found to be quite low in comparison with the turbulence in the inlet boundary layer.


Sign in / Sign up

Export Citation Format

Share Document