scholarly journals Low-Cost Diagnosis of Rotor Asymmetries of Induction Machines at Very Low Slip with the Goertzel Algorithm Applied to the Rectified Current

Author(s):  
Javier Martinez-Roman ◽  
Ruben Puche-Panadero ◽  
Carla Terron-Santiago ◽  
Angel Sapena-Bano ◽  
Jordi Burriel-Valencia ◽  
...  
2015 ◽  
Vol 30 (4) ◽  
pp. 1409-1419 ◽  
Author(s):  
Angel Sapena-Bano ◽  
Manuel Pineda-Sanchez ◽  
Ruben Puche-Panadero ◽  
Javier Martinez-Roman ◽  
Zeljko Kanovic

Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3471 ◽  
Author(s):  
Jordi Burriel-Valencia ◽  
Ruben Puche-Panadero ◽  
Javier Martinez-Roman ◽  
Angel Sapena-Bano ◽  
Manuel Pineda-Sanchez

Fault diagnosis of rotor asymmetries of IM using the stator current relies on the detection of the characteristic signatures of the fault harmonics in the current spectrum. In some scenarios, such as large induction machines running at a very low slip, or unloaded machines tested offline, this technique may fail. In these scenarios, the fault harmonics are very close to the frequency of the fundamental component, and have a low amplitude, so that they may remain undetected, buried under the fundamental’s leakage, until the damage is severe. To avoid false positives, a proven approach is to search for the fault harmonics in the current envelope, instead of the current itself, because in this case the spectrum is free from the leakage of the fundamental. Besides, the fault harmonics appear at a very low frequency. Nevertheless, building the current spectrum is costly in terms of computing complexity, as in the case of the Hilbert transform, or hardware resources, as in the need for simultaneously sampling three stator currents in the case of the EPVA. In this work, a novel method is proposed to avoid this problem. It is based on sampling a phase current just twice per current cycle, with a fixed delay with respect to its zero crossings. It is shown that the spectrum of this reduced set of current samples contains the same fault harmonics as the spectrum of the full-length current envelope, despite using a minimal amount of computing resources. The proposed approach is cost-effective, because the computational requirements for building the current envelope are reduced to less than 1 % of those required by other conventional methods, in terms of storage and computing time. In this way, it can be implemented with low-cost embedded devices for on-line fault diagnosis. The proposed approach is introduced theoretically and validated experimentally, using a commercial induction motor with a broken bar under different load and supply conditions. Besides, the proposed approach has been implemented on a low-cost embedded device, which can be accessed on-line for remote fault diagnosis.


2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Justin Trzeciak ◽  
James A. Mynderse

Abstract Pressure sores are a costly, painful problem for wheelchair users, caused by prolonged periods of mechanical loading. A common location of pressure sores in wheelchair users is the tissue between the ischial tuberosities and the seating surface. The pressure exerted on the tissue, or interface pressure, can be measured using piezoresistive fabric. This work demonstrates the use of the Goertzel algorithm for efficiently acquiring interface pressure data from a fabric assembly consisting of a layer of piezoresistive fabric between two layers of fabric with conducting and non-conducting stripes. The Goertzel algorithm was used to sample sums of sine waves from the conductive columns of the fabric assembly and calculate the amplitudes of each component sine wave corresponding to the local interface pressure. The Goertzel algorithm is more efficient for this application than a fast Fourier transform due to the limited number of calculated frequency bins needed for this application and more freedom in choice of sample size. The algorithm was successfully used to generate two-dimensional, 32 × 32 sensel interface pressure maps once per second. The Goertzel algorithm can be used in tandem with generated sine waves to measure interface pressure from piezoresistive fabric. Low-cost, accurate interface pressure measurements will help lessen the risk of pressure sores in wheelchair users.


2015 ◽  
Vol 66 (6) ◽  
pp. 311-316 ◽  
Author(s):  
Zhiwei Zhang ◽  
Libing Zhou

Abstract Various electric machines can be the candidate for electric vehicles applications, including induction machines, permanent magnet synchronous machines, switched reluctance machines, etc. Another class of machine, which has been relatively ignored, is synchronous reluctance machines. In order to enhance and increase torque density of pure synchronous reluctance machines, the low cost permanent magnet can be inserted into rotor lamination to contribute torque production, which is so-called permanent magnet-assisted synchronous reluctance machines. This paper presents the design and rotor geometry analysis of low cost ferrite permanent magnet-assisted synchronous reluctance machines with transversally-laminated rotor. The advanced finite element method will be employed to calculate d-axis and q-axis inductance variation with rotor geometric parameters. The electromagnetic performance of optimized permanent magnet-assisted synchronous reluctance machines will be evaluated as well.


Author(s):  
Y. L. Chen ◽  
S. Fujlshiro

Metastable beta titanium alloys have been known to have numerous advantages such as cold formability, high strength, good fracture resistance, deep hardenability, and cost effectiveness. Very high strength is obtainable by precipitation of the hexagonal alpha phase in a bcc beta matrix in these alloys. Precipitation hardening in the metastable beta alloys may also result from the formation of transition phases such as omega phase. Ti-15-3 (Ti-15V- 3Cr-3Al-3Sn) has been developed recently by TIMET and USAF for low cost sheet metal applications. The purpose of the present study was to examine the aging characteristics in this alloy.The composition of the as-received material is: 14.7 V, 3.14 Cr, 3.05 Al, 2.26 Sn, and 0.145 Fe. The beta transus temperature as determined by optical metallographic method was about 770°C. Specimen coupons were prepared from a mill-annealed 1.2 mm thick sheet, and solution treated at 827°C for 2 hr in argon, then water quenched. Aging was also done in argon at temperatures ranging from 316 to 616°C for various times.


Author(s):  
J. D. Muzzy ◽  
R. D. Hester ◽  
J. L. Hubbard

Polyethylene is one of the most important plastics produced today because of its good physical properties, ease of fabrication and low cost. Studies to improve the properties of polyethylene are leading to an understanding of its crystalline morphology. Polyethylene crystallized by evaporation from dilute solutions consists of thin crystals called lamellae. The polyethylene molecules are parallel to the thickness of the lamellae and are folded since the thickness of the lamellae is much less than the molecular length. This lamellar texture persists in less perfect form in polyethylene crystallized from the melt.Morphological studies of melt crystallized polyethylene have been limited due to the difficulty of isolating the microstructure from the bulk specimen without destroying or deforming it.


Sign in / Sign up

Export Citation Format

Share Document