A Method with Paraconsistent Partial Differential Equation used in Explicit Solution of one-dimensional Heat Conduction

2016 ◽  
Vol 14 (4) ◽  
pp. 1842-1848
Author(s):  
Joao Inacio Da Silva Filho ◽  
Clovis Misseno da Cruz
Author(s):  
Kaitlyn Parsons ◽  
Tyler Reichanadter ◽  
Andi Vicksman ◽  
Harvey Segur

The heat equation is a partial differential equation that elegantly describes heat conduction or other diffusive processes. Primary methods for solving this equation require time-independent boundary conditions. In reality this assumption rarely has any validity. Therefore it is necessary to construct an analytical method by which to handle the heat equation with time-variant boundary conditions. This paper analyzes a physical system in which a solid brass cylinder experiences heat flow from the central axis to a heat sink along its outer rim. In particular, the partial differential equation is transformed such that its boundary conditions are zero which creates a forcing function in the transform PDE. This transformation constructs a Green’s function, which admits the use of variation of parameters to find the explicit solution. Experimental results verify the success of this analytical method. KEYWORDS: Heat Equation; Bessel-Fourier Decomposition; Cylindrical; Time-dependent Boundary Conditions; Orthogonality; Partial Differential Equation; Separation of Variables; Green’s Functions


1964 ◽  
Vol 60 (4) ◽  
pp. 897-907 ◽  
Author(s):  
M. Wadsworth ◽  
A. Wragg

AbstractThe replacement of the second space derivative by finite differences reduces the simplest form of heat conduction equation to a set of first-order ordinary differential equations. These equations can be solved analytically by utilizing the spectral resolution of the matrix formed by their coefficients. For explicit boundary conditions the solution provides a direct numerical method of solving the original partial differential equation and also gives, as limiting forms, analytical solutions which are equivalent to those obtainable by using the Laplace transform. For linear implicit boundary conditions the solution again provides a direct numerical method of solving the original partial differential equation. The procedure can also be used to give an iterative method of solving non-linear equations. Numerical examples of both the direct and iterative methods are given.


1963 ◽  
Vol 85 (3) ◽  
pp. 203-207 ◽  
Author(s):  
Fazil Erdogan

Integral transforms are used in the application of the weighted residual methods to the solution of problems in heat conduction. The procedure followed consists in reducing the given partial differential equation to an ordinary differential equation by successive applications of appropriate integral transforms, and finding its solution by using the weighted-residual methods. The undetermined coefficients contained in this solution are functions of transform variables. By inverting these functions the coefficients are obtained as functions of the actual variables.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
I. Rusagara ◽  
C. Harley

The temperature profile for fins with temperature-dependent thermal conductivity and heat transfer coefficients will be considered. Assuming such forms for these coefficients leads to a highly nonlinear partial differential equation (PDE) which cannot easily be solved analytically. We establish a numerical balance rule which can assist in getting a well-balanced numerical scheme. When coupled with the zero-flux condition, this scheme can be used to solve this nonlinear partial differential equation (PDE) modelling the temperature distribution in a one-dimensional longitudinal triangular fin without requiring any additional assumptions or simplifications of the fin profile.


1957 ◽  
Vol 24 (3) ◽  
pp. 329-332
Author(s):  
R. E. Kidder

Abstract This paper presents an analytic solution to a problem of the transient flow of gas within a one-dimensional semi-infinite porous medium. A perturbation method, carried out to include terms of the second order, is employed to obtain a solution of the nonlinear partial differential equation describing the flow of gas. The zero-order term of the solution represents the solution of the linearized partial differential equation of gas flow in porous media given by Green and Wilts (1).


It is shown that simple approximate solutions of the partial differential equation for diffusion (or heat conduction) in finite solids of various shapes and under various conditions can be derived from the simple solutions which are rigorously applicable to linear diffusion in a semi-infinite slab. The case in which the initial volume concentration is constant and the surface concentration is zero is considered in detail. For linear diffusion in a finite slab, the solutions show that each end of the slab can be regarded as functioning as the end of a semi-infinite slab for a time during which the central and the average fractional concentrations fall to 0·6 and 0·3, respectively. For a small region near the centre, this is true for a much longer time range, i. e. till the central and the average fractional concentrations fall to 0·2 and 0·1, respectively. Hence, very simple expressions for the concentration distribution or for average concentration in solids of various shapes are obtained without using any special mathematical method. The condition under which a solid of any shape or dimensions behaves as a linear semi-infinite slab is formulated. Some empirical and experimental findings of other workers are examined and found to be consistent with the theoretical conclusions. To illustrate the general applicability of the method, linear diffusion in a finite slab when the material is generated inside it at a constant rate or when the surface concentration increases linearly with time is briefly discussed and explicit results given. All expressions are obtained in terms of a dimensionless parameter, and it is shown that; the concentration distribution in solids of any material and of various shapes can be derived from one single universal curve. Tables and graphs are given showing the relation between the numerical values calculated from the present simple solutions and those obtained by other much more laborious methods.


1997 ◽  
Vol 64 (3) ◽  
pp. 658-663 ◽  
Author(s):  
C. M. Leech

The Hamilton-Jacobi partial differential equation is established for continuum systems; to do this a new concept in material distributions is introduced. The Lagrangian and Hamiltonian are developed, so that the Hamilton-Jacobi equation can be formulated and the principal function defined. Finally the principal function is constructed for the dynamics of a one-dimensional linear elastic bar; the solution for its’ vibrations is then established following the differentiation of the principal function.


1994 ◽  
Vol 116 (1) ◽  
pp. 129-136 ◽  
Author(s):  
A. H. Nayfeh ◽  
S. A. Nayfeh

We use several methods to study the nonlinear modes of one-dimensional continuous systems with cubic inertia and geometric nonlinearities. Invariant manifold and perturbation methods applied to the discretized system and the method of multiple scales applied to the partial-differential equation and boundary conditions are discussed and their equivalence is demonstrated. The method of multiple scales is then applied directly to the partial-differential equation and boundary conditions governing several nonlinear beam problems.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Dawei Cheng ◽  
Wenke Wang ◽  
Xi Chen ◽  
Zaiyong Zhang

For one-dimensional (1D) nonlinear consolidation, the governing partial differential equation is nonlinear. This paper develops the finite analytic method (FAM) to simulate 1D nonlinear consolidation under different time-dependent loading and initial conditions. To achieve this, the assumption of constant initial effective stress is not considered and the governing partial differential equation is transformed into the diffusion equation. Then, the finite analytic implicit scheme is established. The convergence and stability of finite analytic numerical scheme are proven by a rigorous mathematical analysis. In addition, the paper obtains three corrected semianalytical solutions undergoing suddenly imposed constant loading, single ramp loading, and trapezoidal cyclic loading, respectively. Comparisons of the results of FAM with the three semianalytical solutions and the result of FDM, respectively, show that the FAM can obtain stable and accurate numerical solutions and ensure the convergence of spatial discretization for 1D nonlinear consolidation.


Sign in / Sign up

Export Citation Format

Share Document