Analysis of an induction heating system by the finite element method combined with a boundary integral equation

1987 ◽  
Vol 23 (2) ◽  
pp. 1827-1832 ◽  
Author(s):  
T. Miyoshi ◽  
M. Sumiya ◽  
H. Omori
2009 ◽  
Vol 152-153 ◽  
pp. 407-410
Author(s):  
Ilona Ilieva Iatcheva ◽  
Rumena Stancheva ◽  
Hristofor Tahrilov ◽  
Ilonka Lilianova

The aim of the work is precise coupled –electromagnetic and temperature field analysis of an induction heating system by finite element method. Presented example is referred to real induction heating system. The problem was solved as nonlinear, transient and axisymmetrical. The numerical model of the coupled fields is based on the finite element method and electromagnetic and temperature distributions have been obtained using COMSOL 3.3 software package.


2021 ◽  
pp. 64-67
Author(s):  

The application of induction heating of a die tool during hot stamping of large-sized parts is considered. A design of four inductors is proposed. The calculation confirmed the possibility of maintaining the working temperature of the die tool in the subject way. Keywords: die tool, induction heating, finite element method [email protected]


1983 ◽  
Vol 18 (4) ◽  
pp. 199-205 ◽  
Author(s):  
R T Fenner

The principles of the boundary integral equation (BIE) or boundary element method (BEM) are discussed in a non-mathematical way. The technique is compared with other numerical methods, particularly the finite element method (FEM), on the basis of computational efficiency, and the main advantages and disadvantages of the BIE approach are outlined.


1982 ◽  
Vol 19 (03) ◽  
pp. 272-292
Author(s):  
Donald Liu ◽  
Yung-Kuang Chen

The finite-element method has become a popular and effective tool not only for structural analysis, but also for a wide range of physical problems which are of particular interest to the marine industry. A brief review of the finite-element formulation for structural and nonstructural problems is presented. Applications to marine structures, including static and dynamic analysis and fracture mechanics, are given. Nonstructural applications to heat transfer and ship hydrodynamic problems are also demonstrated. Recent developments in the coupled fluid-structural interaction problem using the boundary integral method, which is considered as an extension of the finite-element method, are also described.


Author(s):  
Sebastian Grabmaier ◽  
Matthias Jüttner ◽  
Wolfgang Rucker

Purpose Considering the vector Helmholtz equation in three dimensions, this paper aims to present a novel approach for coupling the finite element method and a boundary integral formulation. It is demonstrated that the method is well-suited for many realistic three-dimensional problems in high-frequency engineering. Design/methodology/approach The formulation is based on partial solutions fulfilling the global boundary conditions and the iterative interaction between them. In comparison to other coupling formulation, this approach avoids the typical singularity in the integral kernels. The approach applies ideas from domain decomposition techniques and is implemented for a parallel calculation. Findings Using confirming elements for the trace space and default techniques to realize the infinite domain, no additional loss in accuracy is introduced compared to a monolithic finite element method approach. Furthermore, the degree of coupling between the finite element method and the integral formulation is reduced. The accuracy and convergence rate are demonstrated on a three-dimensional antenna model. Research limitations/implications This approach introduces additional degrees of freedom compared to the classical coupling approach. The benefit is a noticeable reduction in the number of iterations when the arising linear equation systems are solved separately. Practical implications This paper focuses on multiple heterogeneous objects surrounded by a homogeneous medium. Hence, the method is suited for a wide range of applications. Originality/value The novelty of the paper is the proposed formulation for the coupling of both methods.


2017 ◽  
Vol 11 (1) ◽  
pp. 14-19
Author(s):  
Ryszard Sygulski ◽  
Michał Guminiak ◽  
Łukasz Polus

Abstract The stability of the element of a steel welded girder subjected to bending and shear forces is considered. The considered element is a rectangular plate supported on boundary. The type of a plate boundary conditions depend on the types (thickness) of the stiffeners. Considered plate is loaded by in-plane forces causing bending and shear effects. The Finite Element Method was applied to carry out the analysis. Additionally the Boundary Element Method in terms of boundary-domain integral equation was applied to evaluate the critical shear loading.


Sign in / Sign up

Export Citation Format

Share Document