A Novel Magnetic Flux Weakening Method of Permanent Magnet Synchronous Motor for Electric Vehicles

2012 ◽  
Vol 48 (11) ◽  
pp. 4042-4045 ◽  
Author(s):  
Ki-Chan Kim
2018 ◽  
Vol 10 (1) ◽  
pp. 168781401770435 ◽  
Author(s):  
Bin Liu ◽  
Yue Zhao ◽  
Hui-Zhong Hu

A kind of flux-weakening control method based on speed loop structure-variable sliding mode controller is proposed for interior permanent magnet synchronous motor in electric vehicles. The method combines maximum torque per ampere with vector control strategy to control electric vehicle’s interior permanent magnet synchronous motor. During the flux-weakening control phase, the anti-windup integral controller is introduced into the current loop to prevent the current regulator from entering the saturated state. At the same time, in order to further improve the utilization rate of the direct current bus voltage and expand the flux-weakening regulating range, a space vector pulse-width modulation over-modulation unit is employed to contravariant the direct current bus voltage. Comparing with the conventional proportional–integral controller, the proposed sliding mode control algorithm shows that it has more reliable control performance. In addition, more prominent flux-weakening performance of the proposed flux-weakening method is illustrated by numerical simulation comparison.


Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 179 ◽  
Author(s):  
Baojun Qu ◽  
Qingxin Yang ◽  
Yongjian Li ◽  
Miguel Angel Sotelo ◽  
Shilun Ma ◽  
...  

Aiming to successfully meet the requirements of a large output torque and a wide range of flux weakening speed expansion in permanent magnet synchronous motors (PMSM) for electric vehicles, a novel surface insert permanent magnet synchronous motor (SIPMSM) is developed. The method of notching auxiliary slots between the magnetic poles in the rotor and unequal thickness magnetic poles is proposed to improve the performance of the motor. By analyzing the magnetic circuit characteristics of the novel SIPMSM, the notching auxiliary slots between the adjacent magnetic poles can affect the q-axis inductance, and the shape of magnetic pole effects the d-axis inductance of the motor. The combined action of the two factors not only weakens the cogging torque, but also improves the flux weakening capability of the motor. In this paper, the response surface methodology (RSM) is used to establish a mathematical model of the relationship between the structural parameters of the motor and the optimization objectives, and the optimal design of the motor is completed by solving the mathematical model. Experimental validation has been conducted to show the correctness and effectiveness of the proposed SIPMSM.


Sign in / Sign up

Export Citation Format

Share Document