scholarly journals Multi-frequency Data Parallel Spin Wave Logic Gates

2021 ◽  
pp. 1-1
Author(s):  
Abdulqader Nael Mahmoud ◽  
Frederic Vanderveken ◽  
Christoph Adelmann ◽  
Florin Ciubotaru ◽  
Said Hamdioui ◽  
...  
2021 ◽  
Author(s):  
Abdulqader Mahmoud ◽  
Frederic Vanderveken ◽  
Christoph Adelmann ◽  
Florin Ciubotaru ◽  
Said Hamdioui ◽  
...  

By their very nature, Spin Waves (SWs) with different frequencies can propagate through the same waveguide without affecting each other, while only interfering with their own species. Therefore, more SW encoded data sets can coexist, propagate, and interact in parallel, which opens the road towards hardware replication free parallel data processing. In this paper, we take advantage of these features and propose a novel data parallel spin wave based computing approach. To explain and validate the proposed concept, byte-wide 2-input XOR and 3-input Majority gates are implemented and validated by means of Object Oriented MicroMagnetic Framework (OOMMF) simulations. Furthermore, we introduce an optimization algorithm meant to minimize the area overhead associated with multifrequency operation and demonstrate that it diminishes the byte-wide gate area by 30% and 41% for XOR and Majority implementations, respectively. To get inside on the practical implications of our proposal we compare the byte-wide gates with conventional functionally equivalent scalar SW gate based implementations in terms of area, delay, and power consumption. Our results indicate that the area optimized 8-bit 2-input XOR and 3-input Majority gates require 4.47x and 4.16x less area, respectively, at the expense of 5% and 7% delay increase, respectively, without inducing any power consumption overhead. Finally, we discuss factors that are limiting the currently achievable parallelism to 8 for phase based gate output detection and demonstrate by means of OOMMF simulations that this can be increased 16 for threshold based detection based gates.


2021 ◽  
Author(s):  
Abdulqader Mahmoud ◽  
Frederic Vanderveken ◽  
Christoph Adelmann ◽  
Florin Ciubotaru ◽  
Said Hamdioui ◽  
...  

By their very nature, Spin Waves (SWs) with different frequencies can propagate through the same waveguide without affecting each other, while only interfering with their own species. Therefore, more SW encoded data sets can coexist, propagate, and interact in parallel, which opens the road towards hardware replication free parallel data processing. In this paper, we take advantage of these features and propose a novel data parallel spin wave based computing approach. To explain and validate the proposed concept, byte-wide 2-input XOR and 3-input Majority gates are implemented and validated by means of Object Oriented MicroMagnetic Framework (OOMMF) simulations. Furthermore, we introduce an optimization algorithm meant to minimize the area overhead associated with multifrequency operation and demonstrate that it diminishes the byte-wide gate area by 30% and 41% for XOR and Majority implementations, respectively. To get inside on the practical implications of our proposal we compare the byte-wide gates with conventional functionally equivalent scalar SW gate based implementations in terms of area, delay, and power consumption. Our results indicate that the area optimized 8-bit 2-input XOR and 3-input Majority gates require 4.47x and 4.16x less area, respectively, at the expense of 5% and 7% delay increase, respectively, without inducing any power consumption overhead. Finally, we discuss factors that are limiting the currently achievable parallelism to 8 for phase based gate output detection and demonstrate by means of OOMMF simulations that this can be increased 16 for threshold based detection based gates.


2019 ◽  
Vol 10 ◽  
pp. 1-4 ◽  
Author(s):  
Alexey B. Ustinov ◽  
Erkki Lahderanta ◽  
Mitsuteru Inoue ◽  
Boris A. Kalinikos
Keyword(s):  

2008 ◽  
Vol 1067 ◽  
Author(s):  
Alexander Khitun ◽  
Mingqiang Bao ◽  
Yina Wu ◽  
Ji-Young Kim ◽  
Augustin Hong ◽  
...  

ABSTRACTWe analyze spin wave-based logic circuits as a possible route to building reconfigurable magnetic circuits compatible with conventional electron-based devices. A distinctive feature of the spin wave logic circuits is that a bit of information is encoded into the phase of the spin wave. It makes possible to transmit information as a magnetization signal through magnetic waveguides without the use of an electric current. By exploiting sin wave superposition, a set of logic gates such as AND, OR, and Majority gate can be realized in one circuit. We present experimental data illustrating the performance of a three-terminal micrometer scale spin wave-based logic device fabricated on a silicon platform. The device operates in the GHz frequency range and at room temperature. The output power modulation is achieved via the control of the relative phases of two input spin wave signals. The obtained data shows the possibility of using spin waves for achieving logic functionality. The scalability of the spin wave-based logic devices is defined by the wavelength of the spin wave, which depends on the magnetic material and waveguide geometry. Potentially, a multifunctional spin wave logic gate can be scaled down to 0.1μm2. Another potential advantage of the spin wave-based logic circuitry is the ability to implement logic gates with fewer elements as compared to CMOS-based circuits in achieving same functionality. The shortcomings and disadvantages of the spin wave-based devices are also discussed.


2007 ◽  
Vol 998 ◽  
Author(s):  
Alexander Khitun ◽  
Mingqiang Bao ◽  
Joo-Young Lee ◽  
Kang Wang ◽  
Dok Won Lee ◽  
...  

ABSTRACTWe investigate spin wave propagation and interference in conducting ferromagnetic nanostructures for potential application in spin wave based logic circuits. The novelty of this approach is that information transmission is accomplished without charge transfer. A bit of information is encoded into the phase of spin wave propagating in a nanometer thick ferromagnetic film. A set of “AND”, “NOR”, and “NOT” logic gates can be realized in one device structure by utilizing the effect of spin wave superposition. We present experimental data on spin wave transport in 100nm CoFe films at room temperature obtained by the propagation spin wave spectroscopy technique. Spin wave transport has been studied in the frequency range from 0.5 GHz to 6.0 GHz under different configurations of the external magnetic field. Both phase and amplitude of the spin wave signal are sensitive to the external magnetic field showing 60Deg/10G and 4dB/20G modulation rates, respectively. Potentially, spin wave based logic circuits may compete with traditional electron-based ones in terms of logic functionality and power consumption. The shortcomings of the spin wave based circuits are discussed.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Qi Wang ◽  
Abbass Hamadeh ◽  
Roman Verba ◽  
Vitaliy Lomakin ◽  
Morteza Mohseni ◽  
...  

AbstractThe field of magnonics, which aims at using spin waves as carriers in data-processing devices, has attracted increasing interest in recent years. We present and study micromagnetically a nonlinear nanoscale magnonic ring resonator device for enabling implementations of magnonic logic gates and neuromorphic magnonic circuits. In the linear regime, this device efficiently suppresses spin-wave transmission using the phenomenon of critical resonant coupling, thus exhibiting the behavior of a notch filter. By increasing the spin-wave input power, the resonance frequency is shifted, leading to transmission curves, depending on the frequency, reminiscent of the activation functions of neurons, or showing the characteristics of a power limiter. An analytical theory is developed to describe the transmission curve of magnonic ring resonators in the linear and nonlinear regimes, and is validated by a comprehensive micromagnetic study. The proposed magnonic ring resonator provides a multi-functional nonlinear building block for unconventional magnonic circuits.


2015 ◽  
Vol 394 ◽  
pp. 67-69 ◽  
Author(s):  
Xiangxu Chen ◽  
Qi Wang ◽  
Yulong Liao ◽  
Xiaoli Tang ◽  
Huaiwu Zhang ◽  
...  

2016 ◽  
Vol 2 (7) ◽  
pp. e1501892 ◽  
Author(s):  
Jae Hyun Kwon ◽  
Jungbum Yoon ◽  
Praveen Deorani ◽  
Jong Min Lee ◽  
Jaivardhan Sinha ◽  
...  

Spin waves are propagating disturbances in the magnetization of magnetic materials. One of their interesting properties is nonreciprocity, exhibiting that their amplitude depends on the magnetization direction. Nonreciprocity in spin waves is of great interest in both fundamental science and applications because it offers an extra knob to control the flow of waves for the technological fields of logics and switch applications. We show a high nonreciprocity in spin waves from Ta/Py bilayer systems with out-of-plane magnetic fields. The nonreciprocity depends on the thickness of Ta underlayer, which is found to induce an interfacial anisotropy. The origin of observed high nonreciprocity is twofold: different polarities of the in-plane magnetization due to different angles of canted out-of-plane anisotropy and the spin pumping effect at the Ta/Py interface. Our findings provide an opportunity to engineer highly efficient, nonreciprocal spin wave–based applications, such as nonreciprocal microwave devices, magnonic logic gates, and information transports.


Sign in / Sign up

Export Citation Format

Share Document