delay increase
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 10)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Abdulqader Mahmoud ◽  
Frederic Vanderveken ◽  
Christoph Adelmann ◽  
Florin Ciubotaru ◽  
Said Hamdioui ◽  
...  

By their very nature, Spin Waves (SWs) with different frequencies can propagate through the same waveguide without affecting each other, while only interfering with their own species. Therefore, more SW encoded data sets can coexist, propagate, and interact in parallel, which opens the road towards hardware replication free parallel data processing. In this paper, we take advantage of these features and propose a novel data parallel spin wave based computing approach. To explain and validate the proposed concept, byte-wide 2-input XOR and 3-input Majority gates are implemented and validated by means of Object Oriented MicroMagnetic Framework (OOMMF) simulations. Furthermore, we introduce an optimization algorithm meant to minimize the area overhead associated with multifrequency operation and demonstrate that it diminishes the byte-wide gate area by 30% and 41% for XOR and Majority implementations, respectively. To get inside on the practical implications of our proposal we compare the byte-wide gates with conventional functionally equivalent scalar SW gate based implementations in terms of area, delay, and power consumption. Our results indicate that the area optimized 8-bit 2-input XOR and 3-input Majority gates require 4.47x and 4.16x less area, respectively, at the expense of 5% and 7% delay increase, respectively, without inducing any power consumption overhead. Finally, we discuss factors that are limiting the currently achievable parallelism to 8 for phase based gate output detection and demonstrate by means of OOMMF simulations that this can be increased 16 for threshold based detection based gates.


2021 ◽  
Author(s):  
Abdulqader Mahmoud ◽  
Frederic Vanderveken ◽  
Christoph Adelmann ◽  
Florin Ciubotaru ◽  
Said Hamdioui ◽  
...  

By their very nature, Spin Waves (SWs) with different frequencies can propagate through the same waveguide without affecting each other, while only interfering with their own species. Therefore, more SW encoded data sets can coexist, propagate, and interact in parallel, which opens the road towards hardware replication free parallel data processing. In this paper, we take advantage of these features and propose a novel data parallel spin wave based computing approach. To explain and validate the proposed concept, byte-wide 2-input XOR and 3-input Majority gates are implemented and validated by means of Object Oriented MicroMagnetic Framework (OOMMF) simulations. Furthermore, we introduce an optimization algorithm meant to minimize the area overhead associated with multifrequency operation and demonstrate that it diminishes the byte-wide gate area by 30% and 41% for XOR and Majority implementations, respectively. To get inside on the practical implications of our proposal we compare the byte-wide gates with conventional functionally equivalent scalar SW gate based implementations in terms of area, delay, and power consumption. Our results indicate that the area optimized 8-bit 2-input XOR and 3-input Majority gates require 4.47x and 4.16x less area, respectively, at the expense of 5% and 7% delay increase, respectively, without inducing any power consumption overhead. Finally, we discuss factors that are limiting the currently achievable parallelism to 8 for phase based gate output detection and demonstrate by means of OOMMF simulations that this can be increased 16 for threshold based detection based gates.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yan Song ◽  
Chenyang Guo ◽  
Panfeng Xu ◽  
Lina Li ◽  
Rui Zhang

AbstractOPC UA PubSub Over TSN is the core of the Industrial Internet and guarantees flexible interaction features for multiple parties in real-time for industrial communication. To achieve the transmission of time-triggered traffic in PubSub NetworkMessage, routing and scheduling data need to be analyzed. Traditional routing and scheduling methods have disadvantages such as low calculation efficiency, slow convergence speed, and poor reliability. Therefore, a routing and scheduling method for OPC UA PubSub NetworkMessage time-triggered traffic based on an improved ant colony algorithm is proposed. First, we analyze the network topology model, traffic model, and traffic transmission constraints of TSN; then, we apply the K-means clustering algorithm, the KSP algorithm based on the shortest path idea, and an improved ant colony algorithm for traffic classification, routing, and scheduling calculation. Experimental results show that this method can effectively reduce the delay increase caused by link congestion, improve the ability to schedule time-triggered traffic, and accelerate the convergence rate of iteration.


Author(s):  
А.А. Корсаков ◽  
В.И. Козлов ◽  
Е.А. Павлов

В работе проводится анализ суточных, сезонных и межгодовых вариаций интенсивности радиошума, а также амплитуды и фазы сигналов радиотехнической системы дальней навигации РСДН-20 по данным регистрации на частоте 11.904 кГц в г. Якутске в периоды нарастания, максимума и спада в 24-м цикле солнечной активности (2009-2017 годы). Наиболее ярко выражены сезонные дневные вариации амплитуды. Зарегистрировано увеличение фазовой задержки радиосигнала от дня к ночи, что характерно для увеличения эффективной высоты волновода Земля – ионосфера. Наблюдаемое уменьшение фазовой задержки в ночное зимнее время на радиотрассе малой протяженности Хабаровск-Якутск возможно объясняется интерференцией мод высших порядков. Наблюдается асимметрия дневных сезонных вариаций амплитуды ОНЧ радиосигналов (11.904 кГц). Амплитуда сигнала в период осеннего равноденствия ближе к летнему солнцестоянию, а амплитуда весеннего равноденствия — к зимнему солнцестоянию. В дневные часы сезонные вариации амплитуды и фазы относительно стабильны год от года. В периоды нарастания, максимума и спада в 24-м цикле солнечной активности отмечены большие изменения амплитуды ОНЧ-сигнала, зарегистрированные зимой, по сравнению с летом. На фоне повышения солнечной активности в зимний период ночью регистрируется повышение фазовой задержки на радиотрассе меньшей протяженности Хабаровск-Якутск (1400 км) на 23 ± 6°. The daily, seasonal and interannual variations of the radio noise intensity, the amplitude and phase of signals from the long-range navigation radio system RSDN-20 are analyzed based on the registration at a frequency of 11.904 kHz in Yakutsk during increase, maximum and decrease periods in the 24th solar cycle activity (2009-2017). The most pronounced seasonal daytime amplitude variations. The signal phase delay increase from day to night was recorded, which is characteristic of an increase in the effective height of the Earthionosphere waveguide. The observed phase delay decrease in the winter night time on the short radio propagation path Khabarovsk-Yakutsk can be explained by the interference of higher-order modes. There is an asymmetry of the daytime seasonal variations of the amplitude of VLF radio signals (11.904 kHz). During daytime, seasonal variations in amplitude and phase are relatively stable from year to year. Against the background of an increase in solar activity in winter, at night, the phase delay increase is recorded by 23 ± 6°on a shorter radio path Khabarovsk-Yakutsk (1400 km).


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Łukasz Brodzik

Purpose Paper aims to present problem of aerodynamic heating of a metallic heat shield. The key elements of this construction are metallic layers of superalloy honeycomb, which significantly increase the structure’s resistance to impact. Paper describes the problem of influence of damage size on increase of thermal load. Design/methodology/approach Numerical analysis was performed in a non-commercial environment FreeFem++ using finite element method, and its results were compared with the results given in the literature. Findings In thermal protection system, a modification was used to delay increase in temperature on the underlying structure as well as to reduce its maximum value. Originality/value In the further part of the paper, selected insulation material was modified by adding additional conductive material.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1129
Author(s):  
You ◽  
Yuan ◽  
Tang ◽  
Qiao

In this paper, an energy and area efficient carry select adder (CSLA) is proposed. To minimize the redundant logic operation of a regular CSLA, a dual carry adder cell is proposed. The proposed dual carry adder is composed of an XOR/XNOR cell and two pairs of sum-carry cells. Both CMOS logic and a transmission gate were applied to the dual carry adder cell to achieve fast and energy efficient operation. Eight-bit, 16b, and 32b square-root (SQRT) CSLAs based on the proposed dual carry adder were developed. The post-layout simulation based on a SMIC 55 nm process demonstrated that the proposed CSLAs reduced power consumption by 68.4–72.2% with a slight delay increase for different bit widths. As the dual carry adder had much fewer transistors than the two regular full adders, the area of the proposed CSLAs was reduced by 45.8–51.1%. The area-power-delay product of the proposed CSLA improved 5.1×–6.73× compared with the regular CSLA.


For real-time services such as voice over internet protocol, video conferencing and peer-to-peer streaming, end-to-end bandwidth estimation is very essential. Several available techniques for estimating bandwidth have been suggested such as Magictrain, IGI / PTR, pathChirp, Yaz and ASSOLO. However, in terms of the accuracy of available bandwidth estimation and/or network load efficiency, these techniques have disadvantages. In this article, we present an available technique of estimating bandwidth consisting of two features to provide high accuracy estimation and low efficiency of network load. One feature is the accessible bandwidth assessment feature that uses the end-to-end delay increase rate to directly calculate the available bandwidth. The other feature is the rate adjustment algorithm which adjusts the mistake calculated using the available bandwidth assessment feature between the real accessible bandwidth and the accessible bandwidth. The suggested method's rate adjustment algorithm is based on Magictrain's because Magictrain offers high precision in estimating accessible bandwidth. Finally, in terms of estimation precision and network load efficiency, we compare the suggested technique with Magictrain using computer simulation and show the effectiveness of the suggested technique


Author(s):  
S.Tamil Selvan

<p>This paper proposed a new concept of highly SNM and low power SRAM cell using carbon nanotube FETs (CNTFETs) at 18nm technology node. As device physical gate length is reduced to below 65 nm, device non-idealities such as large parameter variations and exponential increase in Dynamic leakage current make the I-V characteristics substantially different from traditional MOSFETs and become a serious obstacle to scale devices. CNFETs have received widespread attention as one of the promising successor to MOSFETs. The proposed circuit was simulated in HSPICE using 32nm Stanford CNFET model. Analysis of the results shows that the proposed CNTFET based 3VL 8T SRAM cell, power dissipation, and stability substantially improved compared with the conventional CMOS 6T SRAM cell by 51% and 58% respectively at the expense of 4% write delay increase.</p>


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1313 ◽  
Author(s):  
Muhammad Awais ◽  
Nadeem Javaid ◽  
Amjad Rehman ◽  
Umar Qasim ◽  
Musaed Alhussein ◽  
...  

Nowadays, the Internet of Things enabled Underwater Wireless Sensor Network (IoT-UWSN) is suffering from serious performance restrictions, i.e., high End to End (E2E) delay, low energy efficiency, low data reliability, etc. The necessity of efficient, reliable, collision and interference-free communication has become a challenging task for the researchers. However, the minimum Energy Consumption (EC) and low E2E delay increase the performance of the IoT-UWSN. Therefore, in the current work, two proactive routing protocols are presented, namely: Bellman–Ford Shortest Path-based Routing (BF-SPR-Three) and Energy-efficient Path-based Void hole and Interference-free Routing (EP-VIR-Three). Then we formalized the aforementioned problems to accomplish the reliable data transmission in Underwater Wireless Sensor Network (UWSN). The main objectives of this paper include minimum EC, interference-free transmission, void hole avoidance and high Packet Delivery Ratio (PDR). Furthermore, the algorithms for the proposed routing protocols are presented. Feasible regions using linear programming are also computed for optimal EC and to enhance the network lifespan. Comparative analysis is also performed with state-of-the-art proactive routing protocols. In the end, extensive simulations have been performed to authenticate the performance of the proposed routing protocols. Results and discussion disclose that the proposed routing protocols outperformed the counterparts significantly.


Sign in / Sign up

Export Citation Format

Share Document