Nonlinear Modeling and Decoupling Control of XY Micropositioning Stages With Piezoelectric Actuators

2013 ◽  
Vol 18 (3) ◽  
pp. 821-832 ◽  
Author(s):  
Yangqiu Xie ◽  
Yonghong Tan ◽  
Ruili Dong
2018 ◽  
Vol 66 (8) ◽  
pp. 656-664 ◽  
Author(s):  
Christopher Schindlbeck ◽  
Christian Pape ◽  
Eduard Reithmeier

Abstract Piezoelectric actuators are subject to nonlinear effects when voltage-driven in open-loop control. In particular, hysteresis and creep effects are dominating nonlinearities that significantly deteriorate performance in tracking control scenarios. In this paper, we present an online compensator suitable for piezoelectric actuators that is based on the modified Prandtl-Ishlinskii model and utilizes recursive databases for the compensation of nonlinearities. The compensator scheme is furthermore extended to systems with more than one degree of freedom (DOF) such as Cartesian manipulators by employing a decoupling control design to mitigate inherent cross-coupling disturbances. In order to validate our theoretical derivations, experiments are conducted with coupled trajectories on a commercial 3-DOF micro-positioning unit driven by piezoelectric actuators.


2020 ◽  
Vol 10 (23) ◽  
pp. 8336
Author(s):  
Chenlei Jiao ◽  
Zhe Wang ◽  
Bingrui Lv ◽  
Guilian Wang ◽  
Weiliang Yue

Flexure-based micropositioning stages with high positioning precision are really attractive. This paper reports the design and analysis processes of a two-degree-of-freedom (2-DOF) flexure-based XY micropositioning stage driven by piezoelectric actuators to improve the positioning accuracy and motion performance. First, the structure of the stage was proposed, which was based on rectangular flexure hinges and piezoelectric actuators (PZT) that were arranged symmetrically to realize XY motion. Then, analytical models describing the output stiffness in the XY directions of the stage were established using the compliance matrix method. The finite element analysis method (FEA) was used to validate the analytical models and analyze the static characteristics and the natural frequency of the stage simultaneously. Furthermore, a prototype of the micropositioning stage was fabricated for the performance tests. The output response performance of the stage without an end load was tested using different input signals. The results indicated that the stage had a single direction amplification capability, low hysteresis, and a wide positioning space. The conclusion was that the proposed stage possessed an ideal positioning property and could be well applied to the positioning system.


Author(s):  
Saeid Bashash ◽  
Nader Jalili

Piezoelectric actuators with their sub-nanometer resolution and fast frequency response are becoming increasingly important in today’s micro-and nano-positioning technology. Along this line, this paper undertakes the development of a nonlinear modeling, system identification and control framework for piezoelectric actuators used in such positioning systems. More specifically, a general nonlinear modeling framework for a single piezoelectric actuator combined with a novel method for describing its hysteretic nonlinearity is proposed. For the actuator generated force, a polynomial form of the nonlinearity is assumed, and the time-varying history-dependent parameters of this polynomial are identified through the observed hysteretic characteristics of the actuator. Experimental results demonstrates the validity of the proposed the modeling and identification framework for an in-house high resolution piezoelectric-based stager with capacitive position sensor. Utilizing Lyapunov method and the sliding mode control strategy, the control force acting on the actuator is then designed such that the high frequency tracking control and the asymptotic stability of the system are attained. Simulation results indicate that controller suppresses the high frequency tracking error significantly, noticeably improving the tracking performance.


2001 ◽  
Vol 89 ◽  
pp. 48-54 ◽  
Author(s):  
F. Claeyssen ◽  
R. Le Letty ◽  
N. Lhermet ◽  
F. Barillot ◽  
H. Fabbro ◽  
...  

AIAA Journal ◽  
1998 ◽  
Vol 36 ◽  
pp. 1535-1537 ◽  
Author(s):  
A. Seifert ◽  
S. Eliahu ◽  
D. Greenblatt ◽  
I. Wygnanski

Sign in / Sign up

Export Citation Format

Share Document