Hand-Held Bone Cutting Tool With Autonomous Penetration Detection for Spinal Surgery

2015 ◽  
Vol 20 (6) ◽  
pp. 3018-3027 ◽  
Author(s):  
Takayuki Osa ◽  
Christian Farid Abawi ◽  
Naohiko Sugita ◽  
Hirotaka Chikuda ◽  
Shurei Sugita ◽  
...  
Author(s):  
Takayuki Osa ◽  
Christian Farid Abawi ◽  
Naohiko Sugita ◽  
Hirotaka Chikuda ◽  
Shurei Sugita ◽  
...  

2013 ◽  
pp. n/a-n/a ◽  
Author(s):  
Michael Farrell ◽  
Miguel A. Solano ◽  
Noel Fitzpatrick ◽  
Jelena Jovanovik
Keyword(s):  

Author(s):  
C. W. McCutchen ◽  
Lois W. Tice

Ultramicrotomists live in a state of guerilla warfare with chatter. This situation is likely to be permanent. We can infer this from the history of machine tools. If set the wrong way for the particular combination of cutting tool and material, most if not all machine tools will chatter.In more than 100 years since machine tools became common, no one has evolved a practical recipe that guarantees avoiding chatter. Rather than follow some single very conservative rule to avoid chatter in all cases, machinists detect it when it happens, and change conditions until it stops. This is possible because they have no trouble telling when their cutting tool is chattering. They can see chatter marks, and they can also hear a sometimes deafening noise.


2017 ◽  
Vol 01 (04) ◽  
pp. 317-334
Author(s):  
Jan-Sven Jarvers ◽  
Ulrich Spiegl ◽  
Stefan Glasmacher ◽  
Christoph Heyde ◽  
Christoph Josten

Abstract Importance of Navigation Navigation and intraoperative imaging have undergone an enormous development in recent years. By using intraoperative navigation, the precision of pedicle screw implantation can be increased in the sense of patient safety. Especially in the case of complex defects or tumor diseases, navigation is a decisive aid. As a result of the constantly improved technology, the requirements for reduced radiation exposure and intraoperative control can also be met. The high costs of the devices can be amortized, for example by a reduced number of revisions. This overview presents the principles of navigation in spinal surgery and the advantages and disadvantages of the different navigation procedures.


1998 ◽  
Vol 2 ◽  
pp. 115-122
Author(s):  
Donatas Švitra ◽  
Jolanta Janutėnienė

In the practice of processing of metals by cutting it is necessary to overcome the vibration of the cutting tool, the processed detail and units of the machine tool. These vibrations in many cases are an obstacle to increase the productivity and quality of treatment of details on metal-cutting machine tools. Vibration at cutting of metals is a very diverse phenomenon due to both it’s nature and the form of oscillatory motion. The most general classification of vibrations at cutting is a division them into forced vibration and autovibrations. The most difficult to remove and poorly investigated are the autovibrations, i.e. vibrations arising at the absence of external periodic forces. The autovibrations, stipulated by the process of cutting on metalcutting machine are of two types: the low-frequency autovibrations and high-frequency autovibrations. When the low-frequency autovibration there appear, the cutting process ought to be terminated and the cause of the vibrations eliminated. Otherwise, there is a danger of a break of both machine and tool. In the case of high-frequency vibration the machine operates apparently quiently, but the processed surface feature small-sized roughness. The frequency of autovibrations can reach 5000 Hz and more.


2018 ◽  
Vol 1 (2) ◽  
pp. 2
Author(s):  
Chiung Chyi Shen

Use of pedicle screws is widespread in spinal surgery for degenerative, traumatic, and oncological diseases. The conventional technique is based on the recognition of anatomic landmarks, preparation and palpation of cortices of the pedicle under control of an intraoperative C-arm (iC-arm) fluoroscopy. With these conventional methods, the median pedicle screw accuracy ranges from 86.7% to 93.8%, even if perforation rates range from 21.1% to 39.8%.The development of novel intraoperative navigational techniques, commonly referred to as image-guided surgery (IGS), provide simultaneous and multiplanar views of spinal anatomy. IGS technology can increase the accuracy of spinal instrumentation procedures and improve patient safety. These systems, such as fluoroscopy-based image guidance ("virtual fluoroscopy") and computed tomography (CT)-based computer-guidance systems, have sensibly minimized risk of pedicle screw misplacement, with overall perforation rates ranging from between 14.3% and 9.3%, respectively."Virtual fluoroscopy" allows simultaneous two-dimensional (2D) guidance in multiple planes, but does not provide any axial images; quality of images is directly dependent on the resolution of the acquired fluoroscopic projections. Furthermore, computer-assisted surgical navigation systems decrease the reliance on intraoperative imaging, thus reducing the use of intraprocedure ionizing radiation. The major limitation of this technique is related to the variation of the position of the patient from the preoperative CT scan, usually obtained before surgery in a supine position, and the operative position (prone). The next technological evolution is the use of an intraoperative CT (iCT) scan, which would allow us to solve the position-dependent changes, granting a higher accuracy in the navigation system. 


Sign in / Sign up

Export Citation Format

Share Document