Wavelet-based method for weak satellite signal acquisition

Author(s):  
Nana Lei ◽  
Hao Zhu ◽  
Jianyong Cui
2005 ◽  
Vol 63 (5) ◽  
pp. 389-403 ◽  
Author(s):  
D. Djebouri ◽  
A. Djebbari ◽  
M. Djebbouri

Author(s):  
Arif Hussain ◽  
Hina Magsi ◽  
Arslan Ahmed ◽  
Hadi Hussain ◽  
Zahid Hussain Khand ◽  
...  

The signal acquisition in GPS receivers is the first and very crucial process that may affect the overall performance of a navigation receiver. Acquisition program initiates a searching operation on received navigation signals to detect and identify the visible satellites. However, signal acquisition becomes a very challenging task in a degraded environment (i.e, dense urban) and the receiver may not be able to detect the satellites present in radio-vicinity, thus cannot estimate an accurate position solution. In such environments, satellite signals are attenuated and fluctuated due to fading introduced by Multipath and NLOS reception. To perform signal acquisition in such degraded environments, larger data accumulation can be effective in enhancing SNR, which tradeoff huge computational load, prolonged acquisition time and high cost of receiver. This paper highlights the effects of fading on satellite signal acquisition in GPS receiver through variable data lengths and SNR comparison, and then develops a statistical relationship between satellite visibility and SNR. Furthermore it also analyzes/investigates the tradeoff between computation load and signal data length.


Author(s):  
MOHAMED DJEBBOURI ◽  
DJAMEL DJEBOURI

In Global Positioning System (GPS), receivers use FFT-based convolvers to acquire the signals. This paper shows a robust substitute algorithm for calculating the convolution that is less sensitive to additive noise.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Haichuan Zhang ◽  
Fangling Zeng

This paper presents the new constraint correntropy beamforming method to improve the performance of global navigation satellite system (GNSS) receivers. Although beamforming-based GNSS system possesses the ability of nulling interference sources, the distortions to satellite signal induced by impulsive noises are always neglected. This paper addresses the satellite navigation signal acquisition problem against impulsive noises using the constraint maximum correntropy criterion in framework of the GNSS system. In addition, in order to decrease the number of active elements for avoiding overmuch energy consumption, we introduce the L1-norm penalty equation to the list of constraints of the adaptive filter that forces the coefficients with small magnitudes to zero. From the above, we propose the norm-constraint beamforming method to satisfy the conflicting requirements between the coefficients sparsity and the performance of the satellite signal acquisition. The proposed CSMC maintains the robustness against impulsive outliers and achieve better performance in conjunction with less power consumption. An analysis of the mean square convergence properties of the proposed algorithms is presented, and the stability condition of the convergence is derived. Our simulation results demonstrate the superiority of the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document