Artificial Pancreas: In Silico Study Shows No Need of Meal Announcement and Improved Time in Range of Glucose with Intraperitoneal vs Subcutaneous Insulin Delivery

Author(s):  
Chiara Toffanin ◽  
Lalo Magni ◽  
Claudio Cobelli
2018 ◽  
Vol 21 (1) ◽  
pp. 58-65
Author(s):  
Vladimir A. Karpelyev ◽  
Yury I. Philippov ◽  
Artem V. Averin ◽  
Maxim D. Boyarsky ◽  
Dmitriy A. Gavrilov

Background: The efficacy of the treatment of type 1 diabetes can be markedly improved using artificial pancreas (AP), which is a technology to automatically control blood glucose levels. Aim: In this paper, we propose the construction of a controller for controlling the automated delivery of insulin in AP based on a proportionalintegralderivative (PID) algorithm using intraperitoneal (IP) insulin delivery. Methods: The project used rapid-acting insulin in the IP space when setting up a PID controller with feedback to ensure the safe and efficient delivery of insulin. The controller was configured to satisfy feedback insulin present in blood. Controller check was performed In Silico using the metabolic simulator UVA|Padova T1DMS on 10 virtual patients. Results: The proposed controller design has time to reach 83% within the glycaemic range of 70140 mg/dl (3.97.8 mmol/l), without time spent in hypoglycaemia. Conclusions: In a future study we plan to test this controller in vivo to evaluate its performance in vivo.


2018 ◽  
Vol 2 (3) ◽  
pp. 1-1
Author(s):  
Dayu Lv ◽  
◽  
Jose Garcia-Tirado ◽  
Chiara Fabris ◽  
◽  
...  

2019 ◽  
Vol 13 (6) ◽  
pp. 1026-1034 ◽  
Author(s):  
Vanessa Moscardó ◽  
José Luis Díez ◽  
Jorge Bondia

Background: An artificial pancreas with insulin and glucagon delivery has the potential to reduce the risk of hypo- and hyperglycemia in people with type 1 diabetes. However, a maximum dose of glucagon of 1 mg/d is recommended, potentially still requiring rescue carbohydrates in some situations. This work presents a parallel control structure with intrinsic insulin, glucagon, and rescue carbohydrates coordination to overcome glucagon limitations when needed. Methods: The coordinated controller that combines insulin, glucagon, and rescue carbohydrate suggestions (DH-CC-CHO) was compared with the insulin and glucagon delivery coordinated controller (DH-CC). The impact of carbohydrate quantization for practical delivery was also assessed. An in silico study using the UVA-Padova simulator, extended to include exercise and various sources of variability, was performed. Results: DH-CC and DH-CC-CHO performed similarly with regard to mean glucose (126.25 [123.43; 130.73] vs 127.92 [123.99; 132.97] mg/dL, P = .088), time in range (93.04 [90.00; 95.92] vs 92.91 [90.05; 95.75]%, P = .508), time above 180 mg/dL (4.94 [2.72; 7.53] vs 4.99 [2.93; 7.24]%, P = .966), time below 70 mg/dL (0.61 [0.09; 1.75] vs 0.96 [0.23; 2.17]%, P = .1364), insulin delivery (43.50 [38.68; 51.75] vs 42.86 [38.58; 51.36] U/d, P = .383), and glucagon delivery (0.75 [0.40; 1.83] vs 0.76 [0.43; 0.99] mg/d, P = .407). Time below 54 mg/dL was different (0.00 [0.00; 0.05] vs 0.00 [0.00; 0.16]%, P = .036), although non-clinically significant. This was due to the carbs quantization effect in a specific patient, as no statistical difference was found when carbs were not quantized (0.00 [0.00; 0.05] vs 0.00 [0.00; 0.00]%, P = .265). Conclusions: The new strategy of automatic rescue carbohydrates suggestion in coordination with insulin and glucagon delivery to overcome constraints on daily glucagon delivery was successfully evaluated in an in silico proof of concept.


2021 ◽  
pp. 193229682110275
Author(s):  
Dana Lewis

Originally, the future of automated insulin delivery (AID) systems, or artificial pancreas systems (APS), was having them at all, in any form. We’ve learned in the last half dozen years that the future of all artificial pancreas systems holds higher time in range, less work required to manage automated insulin delivery systems to improve quality of life, and the ability to input critical information back into the system itself. The data and user experience stories make it clear: APS works. APS are an improvement over other diabetes therapy methods when they are made available, accessible, and affordable. Understanding the unmet expectations of current users of first generation APS technology may also aid in the development of improved technology and user experiences for the future of APS.


2013 ◽  
Vol 13 (10) ◽  
pp. 1407-1414 ◽  
Author(s):  
L. Fabian ◽  
V. Sulsen ◽  
F. Frank ◽  
S. Cazorla ◽  
E. Malchiodi ◽  
...  

2020 ◽  
Vol 17 (1) ◽  
pp. 40-50
Author(s):  
Farzane Kargar ◽  
Amir Savardashtaki ◽  
Mojtaba Mortazavi ◽  
Masoud Torkzadeh Mahani ◽  
Ali Mohammad Amani ◽  
...  

Background: The 1,4-alpha-glucan branching protein (GlgB) plays an important role in the glycogen biosynthesis and the deficiency in this enzyme has resulted in Glycogen storage disease and accumulation of an amylopectin-like polysaccharide. Consequently, this enzyme was considered a special topic in clinical and biotechnological research. One of the newly introduced GlgB belongs to the Neisseria sp. HMSC071A01 (Ref.Seq. WP_049335546). For in silico analysis, the 3D molecular modeling of this enzyme was conducted in the I-TASSER web server. Methods: For a better evaluation, the important characteristics of this enzyme such as functional properties, metabolic pathway and activity were investigated in the TargetP software. Additionally, the phylogenetic tree and secondary structure of this enzyme were studied by Mafft and Prabi software, respectively. Finally, the binding site properties (the maltoheptaose as substrate) were studied using the AutoDock Vina. Results: By drawing the phylogenetic tree, the closest species were the taxonomic group of Betaproteobacteria. The results showed that the structure of this enzyme had 34.45% of the alpha helix and 45.45% of the random coil. Our analysis predicted that this enzyme has a potential signal peptide in the protein sequence. Conclusion: By these analyses, a new understanding was developed related to the sequence and structure of this enzyme. Our findings can further be used in some fields of clinical and industrial biotechnology.


2016 ◽  
Vol 11 (3) ◽  
pp. 346-356
Author(s):  
Nada Ayadi ◽  
Sarra Aloui ◽  
Rabeb Shaiek ◽  
Oussama Rokbani ◽  
Faten Raboud ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document