In Silico Study of 1, 4 Alpha Glucan Branching Enzyme and Substrate Docking Studies

2020 ◽  
Vol 17 (1) ◽  
pp. 40-50
Author(s):  
Farzane Kargar ◽  
Amir Savardashtaki ◽  
Mojtaba Mortazavi ◽  
Masoud Torkzadeh Mahani ◽  
Ali Mohammad Amani ◽  
...  

Background: The 1,4-alpha-glucan branching protein (GlgB) plays an important role in the glycogen biosynthesis and the deficiency in this enzyme has resulted in Glycogen storage disease and accumulation of an amylopectin-like polysaccharide. Consequently, this enzyme was considered a special topic in clinical and biotechnological research. One of the newly introduced GlgB belongs to the Neisseria sp. HMSC071A01 (Ref.Seq. WP_049335546). For in silico analysis, the 3D molecular modeling of this enzyme was conducted in the I-TASSER web server. Methods: For a better evaluation, the important characteristics of this enzyme such as functional properties, metabolic pathway and activity were investigated in the TargetP software. Additionally, the phylogenetic tree and secondary structure of this enzyme were studied by Mafft and Prabi software, respectively. Finally, the binding site properties (the maltoheptaose as substrate) were studied using the AutoDock Vina. Results: By drawing the phylogenetic tree, the closest species were the taxonomic group of Betaproteobacteria. The results showed that the structure of this enzyme had 34.45% of the alpha helix and 45.45% of the random coil. Our analysis predicted that this enzyme has a potential signal peptide in the protein sequence. Conclusion: By these analyses, a new understanding was developed related to the sequence and structure of this enzyme. Our findings can further be used in some fields of clinical and industrial biotechnology.

2021 ◽  
Vol 19 ◽  
Author(s):  
Preeya Negi ◽  
Lalita Das ◽  
Surya Prakash ◽  
Vaishali M. Patil

Introduction: Natural products or phytochemicals have always been useful as effective therapeutics and for providing the lead for rational drug discovery approaches specific to anti-viral therapeutics. Methods: The ongoing pandemic caused by novel coronavirus has created a demand for effective therapeutics. Thus, to achieve the primary objective to search for effective anti-viral therapeutics, in silico screening of phytochemicals present in Curcuma longa extract (ex. Curcumin) has been planned. Results: The present work involves the evaluation of ADME properties and molecular docking studies. Conclusion: The application of rationalized drug discovery approaches to screen the diverse natural resources will speed up the anti-COVID drug discovery efforts and benefit the global community.


2019 ◽  
Vol 16 (32) ◽  
pp. 894-898
Author(s):  
D. F. SILVA ◽  
H. D. NETO ◽  
M. D. L. FERREIRA ◽  
A. A. O. FILHO ◽  
E. O. LIMA

β-citronellol (3,7-dimethyl-6-octen-1-ol) has been exhibiting a number of pharmacological effects that creates interest about its antimicrobial potential, since several substances of the monoterpene class have already demonstrated to possess activity in this profile. In addition, the emergence of fungal species resistant to current pharmacotherapy poses a serious challenge to health systems, making it necessary to search for new effective therapeutic alternatives to deal with this problem. In this study, the antimicrobial profile of β-citronellol was analyzed. The Prediction of Activity Spectra for Substances (PASS) online software was used to study the antimicrobial activity of the β-citronellol molecule by the use of in silico analysis. In contrast, an in vitro antifungal study of this monoterpene was carried out. For this purpose, the Minimum Inhibitory Concentration (MIC) was determined by the microdilution technique in 96-well plates in Saboraud Dextrose Broth/RPMI against sensitive strains of Candida albicans, and this assay was performed in duplicate. In the in silico analysis of the antimicrobial profile, it was revealed that the monoterpene β-citronellol had a diverse antimicrobial bioactivity profile. For the antifungal activity, it presented a percentage value with Pa: 58.4% (predominant) and its MIC of 128 μg/mL, which was equivalent for all strains tested. The in silico study of the β-citronellol molecule allowed us to consider that the monoterpenoid is very likely to be bioactive against agents that cause fungal infections.


Author(s):  
Mehmet Demirci ◽  
Akın Yiğin ◽  
Fadile Yıldız Zeyrek

Objective: Shiga toxin-producing E. coli (STEC) strains are important foodborne pathogens. Significant outbreaks with STEC strains can be encountered, even if the geography, time or resources were different. The aim of our in silico study was to compare the virulance factors and phylogeny of STEC strains such as EDL933 and Sakai, which have been identified as an agent in important outbreaks in different parts of the world and whole genomic data were in open databases. Method: Genomic NCBI data of eight strains were included in our study, including seven different STEC strains associated with significant epidemics in different parts of the world, and one supershedder strain obtained from cattle feces. Results: According to phylogeny analysis, the most similar strain to EDL933 strain was TW14588, with 96.4% similarity. The most distant similarity was Sakai strains with 79.2%. According to the virulence genes analysis; the presence of 333 genes that constitute virulence factors under nine headings were detected. In the first STEC origin, EDL933, 45% of all virulence genes were found to be active. Adherence genes such as Ecp, Elf, Hcp and toxin genes such as clyA were active in all strains except stx genes. Conclusion: In our in silico study of comparative genomic analysis of STEC strains which are associated with outbreaks, it was determined that STEC strains used different virulence genes besides the stx gene. Indeed, they used certain virulence genes, even their sources, time and locations were different, in the pathogenesis


2018 ◽  
Vol 47 (4) ◽  
pp. 223-229
Author(s):  
Juliana Maria Coutinho BASTOS ◽  
Dimorvan BORDIN ◽  
Andréa Araújo de VASCONCELLOS ◽  
Milton Edson MIRANDA

Abstract Introduction A better tension distribution on implants and abutments in implant-supported fixed partial prosthesis is essential in the rehabilitation of posterior mandible area. Objective: To evaluate the influence of cantilever position and implant connection in a zircônia custom implant-supported fixed partial prosthesis using the 3-D finite element method. Material and method: Four models were made based on tomographic slices of the posterior mandible with a zirconia custom three-fixed screw-retained partial prosthesis. The investigated factors of the in silico study were: cantilever position (mesial or distal) and implant connection (external hexagon or morse taper). 100 N vertical load to premolar and 300 N to molar were used to simulate the occlusal force in each model to evaluate the distribution of stresses in implants, abutments, screws and cortical and cancellous bone. Result: The external hexagon (EH) connection showed higher cortical compression stress when compared to the morse taper (MT). For both connections, the molar cantilever position had the highest cortical compression. The maximum stress peak concentration was located at the cervical bone in contact with the threads of the first implant. The prosthetic and abutment screws associated with the molar cantilevers showed the highest stress concentration, especially with the EH connection. Conclusion: Morse taper implant connetions associated with a mesial cantilever showed a more favorable treatment option for posterior mandible rehabilitation.


Proceedings ◽  
2019 ◽  
Vol 40 (1) ◽  
pp. 2
Author(s):  
Büşra Sevim ◽  
Onur Eroğlu

Angiogenesis is important process that play active role in tumorigenesis. VEGFR-1, a member of the tyrosine kinase receptor family, is known as the receptor for VEGF ligands in tumor cells. SPARC protein has recently been shown to play a role in metastasis in various types of cancer. Momordica charantia; is a valuable plant used quite often in traditional medicine. Triterpenes from that plant appear to be promising in in vitro cancer studies. In this study; triterpenes in fruit and seed of M. charantia were selected according to literature. The 3D structure files of triterpenes were obtained from PubChem. The structure files of ligands were prepared with various programs and converted to the appropriate file format. X-ray diffraction structure files of proteins were obtained from RCSB PDB. These structure files were made suitable for molecular docking studies. Docking was performed with the AutoDock Tool (downloaded from autodock.scripps.edu/resources/adt), and the results were scored using the Vina program. According to the in silico analysis; It has been found that various triterpenes which can be obtained from M. charantia can co-inhibit VEGFR-1 and SPARC proteins. These results show that these triterpenes are promising in terms of new therapeutic routes for aggressive cancer therapy.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Vinod Kumar ◽  
Gopal Singh ◽  
Punesh Sangwan ◽  
A. K. Verma ◽  
Sanjeev Agrawal

β-Propeller phytases (BPPhy) are widely distributed in nature and play a major role in phytate-phosphorus cycling. In the present study, a BPPhy gene from Bacillus licheniformis strain was expressed in E. coli with a phytase activity of 1.15 U/mL and specific activity of 0.92 U/mg proteins. The expressed enzyme represented a full length ORF “PhyPB13” of 381 amino acid residues and differs by 3 residues from the closest similar existing BPPhy sequences. The PhyPB13 sequence was characterized in silico using various bioinformatic tools to better understand structural, functional, and evolutionary aspects of BPPhy class by multiple sequence alignment and homology search, phylogenetic tree construction, variation in biochemical features, and distribution of motifs and superfamilies. In all sequences, conserved sites were observed toward their N-terminus and C-terminus. Cysteine was not present in the sequence. Overall, three major clusters were observed in phylogenetic tree with variation in biophysical characteristics. A total of 10 motifs were reported with motif “1” observed in all 44 protein sequences and might be used for diversity and expression analysis of BPPhy enzymes. This study revealed important sequence features of BPPhy and pave a way for determining catalytic mechanism and selection of phytase with desirable characteristics.


2018 ◽  
Vol 96 (7) ◽  
pp. 676-680
Author(s):  
Péter Nánási ◽  
István Komáromi ◽  
János Almássy

Clinical treatment of heart failure is still not fully solved. A novel class of agents, the myosin motor activators, acts directly on cardiac myosin resulting in an increased force generation and prolongation of contraction. Omecamtiv mecarbil, the lead molecule of this group, is now in human phase 3 displaying promising clinical performance. However, omecamtiv mecarbil is not selective to myosin, because it readily binds to and activates cardiac ryanodine receptors (RyR-2), an effect that may cause complications in case of overdose. In this study, in silico analysis was performed to investigate the docking of omecamtiv mecarbil and other structural analogues to cardiac myosin heavy chain and RyR-2 to select the structure that has a higher selectivity to myosin over RyR-2. In silico docking studies revealed that omecamtiv mecarbil has comparable affinity to myosin and RyR-2: the respective Kd values are 0.60 and 0.87 μmol/L. Another compound, CK-1032100, has much lower affinity to RyR-2 than omecamtiv mecarbil, while it still has a moderate affinity to myosin. It was concluded that further research starting from the chemical structure of CK-1032100 may result a better myosin activator burdened probably less by the RyR-2 binding side effect. It also is possible, however, that the selectivity of omecamtiv mecarbil to myosin over RyR-2 cannot be substantially improved, because similar moieties seem to be responsible for the high affinity to both myosin and RyR-2.


2021 ◽  
Vol 1 ◽  
Author(s):  
César Iglesias ◽  
Ariel Tijman ◽  
Gonzalo López ◽  
María Inés Lapaz ◽  
María Julia Pianzzola ◽  
...  

The development of biocatalytic tools for the synthesis of optically pure amines has been the focus of abundant research in recent years. Among other enzymes, imine reductases have attracted much attention associated with the possibility of attaining chiral secondary amines. Furthermore, the reductive aminase activity associated with some of these enzymes has facilitated the production of optically pure amines from a prochiral ketone, a transformation that opens doors to an incredible array of products. In this work, the genomes from native Streptomyces strains isolated in our lab have been explored on the search for novel imine reductases. Application of different structural criteria and sequence motif filters allowed the identification of two novel enzymes, Ss-IRED_S and Ss-IRED_R. While the former presented outstanding activity towards bulky cyclic imine substrates, the latter presented reductive aminase activity with the assayed ketones. A bioinformatic analysis based on modeling and docking studies was performed in order to explain the differences in enzyme activity, searching for additional criteria that could be used to analyze enzyme candidates in silico, providing additional tools for enzyme selection for a particular application. Our findings suggest that imine reductase activity could be predicted by this analysis, overall accounting for the number of docking positions that meet the catalytic requirements.


Author(s):  
Jeremiah I. Ogah ◽  
Olatunji M. Kolawole ◽  
Steven O. Oguntoye ◽  
Muhammed Mustapha Suleiman

The rise in the incidence of cervical cancer globally has accentuate attention to the potential role of polyphenols as anticancer agents. Different studies have demonstrated the role of some polyphenols in altering Human Papillomavirus (HPV) carcinogenesis. Thus, this study was aimed at establishing the potentials of Schiff-based polyphenols from imesatin and satin as anticancer agents through in silico analysis. The polyphenols were synthesized and characterized using elemental analyses, spectroscopic analyses, UV-visible, Infrared, and Nuclear Magnetic Resonance (1H NMR and 13C, NMR). Molecular docking study of the polyphenols was carried out using Auto Dock Vina. The oncogenic E6 protein structure of HPV 16 was obtained from the protein bank (ID: 4XR8). The E6 proteins were prepared using AutoDock tools. Water molecules were removed from the protein molecules while hydrogen atoms were added. Also, the structures of Curcumin and Isomericitrin were obtained from PubChem. Results showed that three different Schiff based polyphenols were obtained from the synthesis; 3-(2’,4’-dimethoxy benzylidene hydrazono) indoline-2-one (DMBH), 3-(2’-hydroxy-4’-methoxy benzylidene hydrazono) indoline-2-one (HMBD), and 3-((4-4’-((2’’, 4’’-dimethoxy benzylidene amino) benzyl)phenyl)imino) indoline-2-one (DMBP). Higher ability of the docked polyphenols to bind to the E6/E6AP/p53 complex when compared to Curcumin was revealed. Also, results showed that the binding energy of Curcumin and Isomericitrin were -7.1kcal/mol and -8.4kcal/mol respectively while that of the polyphenols ranged from -7.4kcal/mol to -7.9kcal/mol. The molecular docking results of the polyphenols used in this study further confirm their potentials as strong anti-cancer agents.


Sign in / Sign up

Export Citation Format

Share Document