Lattice Equivalent Circuits of Transmission-Line and Coupled-Line Sections

2011 ◽  
Vol 59 (10) ◽  
pp. 2422-2430 ◽  
Author(s):  
Juan Enrique Page ◽  
Jaime Esteban ◽  
Carlos Camacho-Penalosa

Author(s):  
E. Faghand ◽  
S. Karimian ◽  
E. Mehrshahi ◽  
N. Karimian

Abstract A new simple computational tool is proposed for the synthesis of multi-section coupled-line filters based on combined modified planar circuit method (MPCM) and transmission line method (TLM) analysis, referred to as MPCM-TLM. Due to its fundamentally simple architecture, the presented tool offers significantly faster optimization of coupled-line filters – for exactly the same initial simulation set-up – than other costly commercially-available tools, giving equally reliable results. Validity and accuracy of the proposed tool have been verified through the design of 3rd, 5th, and 7th order coupled-line filters and comparative analysis between results obtained from the proposed approach and the high-frequency structure simulator. A remarkable 99% time reduction in the analysis is recorded in the case of 7th order filter using the proposed tool, for almost identical results to HFSS. Therefore, it can be confidently claimed that the proposed technique can be used as a reliable alternative to existing complex, costly, processor-intensive CAD tools.



Author(s):  
Jakub Sorocki ◽  
Ilona Piekarz ◽  
Izabela Slomian ◽  
Slawomir Gruszczynski ◽  
Krzysztof Wincza








2020 ◽  
Author(s):  
Xiaohu Wu ◽  
Xiaoguang Liu ◽  
Yingsong Li

In this article, we present the first demonstration of distributed and symmetrical all-band quasi-absorptive filters that can be designed to arbitrarily high orders. The proposed quasi-absorptive filter consists of a bandpass section (reflective-type coupled-line filter) and absorptive sections (a matched resistor in series with a shorted quarter-wavelength transmission line). Through a detailed analysis, we show that the absorptive sections not only eliminate out-of-band reflections but also determine the passband bandwidth (BW). As such, the bandpass section mainly determines the out-of-band roll-off and the order of the filter can be arbitrarily increased without affecting the filter BW by cascading more bandpass sections. A set of 2.45-GHz one-, two-, and three-pole quasi-absorptive microstrip bandpass filters are designed and measured. The filters show simultaneous input and output absorption across both the passband and the stopband. Measurement results agree very well with the simulation and validate the proposed design concept.



Sign in / Sign up

Export Citation Format

Share Document