Pseudo-Traveling-Wave Resonator With Magnetically Tunable Phase Gradient of Fields and Its Applications to Beam-Steering Antennas

2012 ◽  
Vol 60 (10) ◽  
pp. 3043-3054 ◽  
Author(s):  
Tetsuya Ueda ◽  
Shintaro Yamamoto ◽  
Yuichi Kado ◽  
Tatsuo Itoh
Science ◽  
2019 ◽  
Vol 365 (6451) ◽  
pp. 374-377 ◽  
Author(s):  
Amr M. Shaltout ◽  
Konstantinos G. Lagoudakis ◽  
Jorik van de Groep ◽  
Soo Jin Kim ◽  
Jelena Vučković ◽  
...  

The capability of on-chip wavefront modulation has the potential to revolutionize many optical device technologies. However, the realization of power-efficient phase-gradient metasurfaces that offer full-phase modulation (0 to 2π) and high operation speeds remains elusive. We present an approach to continuously steer light that is based on creating a virtual frequency-gradient metasurface by combining a passive metasurface with an advanced frequency-comb source. Spatiotemporal redirection of light naturally occurs as optical phase-fronts reorient at a speed controlled by the frequency gradient across the virtual metasurface. An experimental realization of laser beam steering with a continuously changing steering angle is demonstrated with a single metasurface over an angle of 25° in just 8 picoseconds. This work can support integrated-on-chip solutions for spatiotemporal optical control, directly affecting emerging applications such as solid-state light detection and ranging (LIDAR), three-dimensional imaging, and augmented or virtual systems.


Transmit/Receive (T/R) modules plays important role in advanced phased array radar system consists of array of antenna elements. In order to produce beam pattern for multiple radiating elements, the phase angle for each T/R module should be assigned with calculated value. When phase gradient is sent to T/R unit, phase values are calculated for array of elements associated with them. The paper presents a beam steering control system architecture consists of Graphical user interface, group controller with scalable T/R control unit (TRCU) having two hexa decagon T/R module controllers (HTRMCs) and control logic unit for parallel data flow. Calculation of 6 bit phase value from the phase gradient carried out using FPGA. Also, use of logic core and quantization of phase values are discussed. The paper also reports the area factor for the proposed architecture


Sign in / Sign up

Export Citation Format

Share Document