scholarly journals Spatiotemporal light control with frequency-gradient metasurfaces

Science ◽  
2019 ◽  
Vol 365 (6451) ◽  
pp. 374-377 ◽  
Author(s):  
Amr M. Shaltout ◽  
Konstantinos G. Lagoudakis ◽  
Jorik van de Groep ◽  
Soo Jin Kim ◽  
Jelena Vučković ◽  
...  

The capability of on-chip wavefront modulation has the potential to revolutionize many optical device technologies. However, the realization of power-efficient phase-gradient metasurfaces that offer full-phase modulation (0 to 2π) and high operation speeds remains elusive. We present an approach to continuously steer light that is based on creating a virtual frequency-gradient metasurface by combining a passive metasurface with an advanced frequency-comb source. Spatiotemporal redirection of light naturally occurs as optical phase-fronts reorient at a speed controlled by the frequency gradient across the virtual metasurface. An experimental realization of laser beam steering with a continuously changing steering angle is demonstrated with a single metasurface over an angle of 25° in just 8 picoseconds. This work can support integrated-on-chip solutions for spatiotemporal optical control, directly affecting emerging applications such as solid-state light detection and ranging (LIDAR), three-dimensional imaging, and augmented or virtual systems.

Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Longqing Cong ◽  
Prakash Pitchappa ◽  
Nan Wang ◽  
Ranjan Singh

Optical chirality is central to many industrial photonic technologies including enantiomer identification, ellipsometry-based tomography, and spin multiplexing in optical communications. However, a substantial chiral response requires a three-dimensional constituent, thereby making the morphology highly complex to realize structural reconfiguration. Moreover, an active reconfiguration demands intense dosage of external stimuli that pose a major limitation for on-chip integration. Here, we report a low bias, electrically programmable synthetic chiral paradigm with a remarkable reconfiguration among levorotatory, dextrorotatory, achiral, and racemic conformations. The switchable optical activity induced by the chiral conformations enables a transmission-type duplex spatial light modulator for terahertz single pixel imaging. The prototype delivers a new strategy towards reconfigurable stereoselective photonic applications and opens up avenues for on-chip programmable chiral devices with tremendous applications in biology, medicine, chemistry, and photonics.


Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Longqing Cong ◽  
Prakash Pitchappa ◽  
Nan Wang ◽  
Ranjan Singh

Optical chirality is central to many industrial photonic technologies including enantiomer identification, ellipsometry-based tomography, and spin multiplexing in optical communications. However, a substantial chiral response requires a three-dimensional constituent, thereby making the morphology highly complex to realize structural reconfiguration. Moreover, an active reconfiguration demands intense dosage of external stimuli that pose a major limitation for on-chip integration. Here, we report a low bias, electrically programmable synthetic chiral paradigm with a remarkable reconfiguration among levorotatory, dextrorotatory, achiral, and racemic conformations. The switchable optical activity induced by the chiral conformations enables a transmission-type duplex spatial light modulator for terahertz single pixel imaging. The prototype delivers a new strategy towards reconfigurable stereoselective photonic applications and opens up avenues for on-chip programmable chiral devices with tremendous applications in biology, medicine, chemistry, and photonics.


Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 937-945
Author(s):  
Ruihuan Zhang ◽  
Yu He ◽  
Yong Zhang ◽  
Shaohua An ◽  
Qingming Zhu ◽  
...  

AbstractUltracompact and low-power-consumption optical switches are desired for high-performance telecommunication networks and data centers. Here, we demonstrate an on-chip power-efficient 2 × 2 thermo-optic switch unit by using a suspended photonic crystal nanobeam structure. A submilliwatt switching power of 0.15 mW is obtained with a tuning efficiency of 7.71 nm/mW in a compact footprint of 60 μm × 16 μm. The bandwidth of the switch is properly designed for a four-level pulse amplitude modulation signal with a 124 Gb/s raw data rate. To the best of our knowledge, the proposed switch is the most power-efficient resonator-based thermo-optic switch unit with the highest tuning efficiency and data ever reported.


Nanophotonics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 3357-3365 ◽  
Author(s):  
Shaohua Dong ◽  
Qing Zhang ◽  
Guangtao Cao ◽  
Jincheng Ni ◽  
Ting Shi ◽  
...  

AbstractPlasmons, as emerging optical diffraction-unlimited information carriers, promise the high-capacity, high-speed, and integrated photonic chips. The on-chip precise manipulations of plasmon in an arbitrary platform, whether two-dimensional (2D) or one-dimensional (1D), appears demanding but non-trivial. Here, we proposed a meta-wall, consisting of specifically designed meta-atoms, that allows the high-efficiency transformation of propagating plasmon polaritons from 2D platforms to 1D plasmonic waveguides, forming the trans-dimensional plasmonic routers. The mechanism to compensate the momentum transformation in the router can be traced via a local dynamic phase gradient of the meta-atom and reciprocal lattice vector. To demonstrate such a scheme, a directional router based on phase-gradient meta-wall is designed to couple 2D SPP to a 1D plasmonic waveguide, while a unidirectional router based on grating metawall is designed to route 2D SPP to the arbitrarily desired direction along the 1D plasmonic waveguide by changing the incident angle of 2D SPP. The on-chip routers of trans-dimensional SPP demonstrated here provide a flexible tool to manipulate propagation of surface plasmon polaritons (SPPs) and may pave the way for designing integrated plasmonic network and devices.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shanshan Chen ◽  
Zhiguang Liu ◽  
Huifeng Du ◽  
Chengchun Tang ◽  
Chang-Yin Ji ◽  
...  

AbstractKirigami, with facile and automated fashion of three-dimensional (3D) transformations, offers an unconventional approach for realizing cutting-edge optical nano-electromechanical systems. Here, we demonstrate an on-chip and electromechanically reconfigurable nano-kirigami with optical functionalities. The nano-electromechanical system is built on an Au/SiO2/Si substrate and operated via attractive electrostatic forces between the top gold nanostructure and bottom silicon substrate. Large-range nano-kirigami like 3D deformations are clearly observed and reversibly engineered, with scalable pitch size down to 0.975 μm. Broadband nonresonant and narrowband resonant optical reconfigurations are achieved at visible and near-infrared wavelengths, respectively, with a high modulation contrast up to 494%. On-chip modulation of optical helicity is further demonstrated in submicron nano-kirigami at near-infrared wavelengths. Such small-size and high-contrast reconfigurable optical nano-kirigami provides advanced methodologies and platforms for versatile on-chip manipulation of light at nanoscale.


2021 ◽  
pp. 104195
Author(s):  
Kangzhu Zhou ◽  
Qian Li ◽  
Zhe Kang ◽  
Jiayao Huang ◽  
P.K.A. Wai

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1304
Author(s):  
Raquel Fernández de Cabo ◽  
David González-Andrade ◽  
Pavel Cheben ◽  
Aitor V. Velasco

Efficient power splitting is a fundamental functionality in silicon photonic integrated circuits, but state-of-the-art power-division architectures are hampered by limited operational bandwidth, high sensitivity to fabrication errors or large footprints. In particular, traditional Y-junction power splitters suffer from fundamental mode losses due to limited fabrication resolution near the junction tip. In order to circumvent this limitation, we propose a new type of high-performance Y-junction power splitter that incorporates subwavelength metamaterials. Full three-dimensional simulations show a fundamental mode excess loss below 0.1 dB in an ultra-broad bandwidth of 300 nm (1400–1700 nm) when optimized for a fabrication resolution of 50 nm, and under 0.3 dB in a 350 nm extended bandwidth (1350–1700 nm) for a 100 nm resolution. Moreover, analysis of fabrication tolerances shows robust operation for the fundamental mode to etching errors up to ± 20 nm. A proof-of-concept device provides an initial validation of its operation principle, showing experimental excess losses lower than 0.2 dB in a 195 nm bandwidth for the best-case resolution scenario (i.e., 50 nm).


Author(s):  
Khadidja Gaffour ◽  
Mohammed Kamel Benhaoua ◽  
Abou El Hassan Benyamina ◽  
Amit Kumar Singh

Sign in / Sign up

Export Citation Format

Share Document