Three-Dimensional Bandpass Frequency-Selective Structures With Multiple Transmission Zeros

2013 ◽  
Vol 61 (10) ◽  
pp. 3578-3589 ◽  
Author(s):  
Bo Li ◽  
Zhongxiang Shen
2021 ◽  
Vol 35 (12) ◽  
pp. 1548-1555
Author(s):  
Zhengyong Yu ◽  
Wanchun Tang

We present a third-order bandpass three-dimensional frequency selective surface (3D FSS) with multiple transmission zeros in this paper. The unit cell of the proposed 3D FSS consists of an air-filled square waveguide and a cuboid dielectric block with three concentric metallic square loops. Due to its inner electromagnetic coupling in the unit cell, this FSS provides a flat passband with three transmission poles, a wide out-of-band rejection with three transmission zeros, and high frequency selectivity. In order to explain the working principle, an equivalent circuit model is established and investigated. Finally, an FSS prototype is fabricated and measured, and the results exhibit good stability for both TE and TM polarizations under incident angles from 0° to 50°. Besides, this FSS has a relatively compact unit cell.


2019 ◽  
Vol 18 (4) ◽  
pp. 596-600 ◽  
Author(s):  
Jianping Zhu ◽  
Zhongyin Hao ◽  
Cheng Wang ◽  
Zhengyong Yu ◽  
Cheng Huang ◽  
...  

2019 ◽  
Vol 8 (3) ◽  
pp. 923-932
Author(s):  
Bimal Raj Dutta ◽  
Binod Kumar Kanaujia ◽  
Chhaya Dalela

The three-dimensional frequency selective surface (3D FSS) with band reject multiple transmission zeros and pseudo-elliptic response is designed from two-dimensional (2D) periodic array of shielded micro strip lines to realize wide out-of–band radio wave rejection. The 3D FSS array consists of multimode cavities whose coupling with air can be controlled to obtain a desired frequency range. The proposed FSS with shorting via to ground exhibits pseudo-elliptic band-reject response in the frequency range from 6GHz to 14GHz. As the plane wave of linear polarization incidents perpendicularly to the shielded micro strip line with perfect electric conductor (PEC) and perfect magnetic conductor (PMC) boundary walls, two quasi-TEM modes are obtained known as air mode and substrate mode. The first 3D FSS design is a combination of two or more resonators. Furthermore, second 3D FSS design with three shorting vias result more elliptic band reject frequency response and a pass band transmission pole. All in phase resonators of design give transmission poles and out of phase combination of resonators give transmission zeros respectively. The proposed 3D FSS is designed and simulated using Ansys HFSS software. These designs exhibit an improved performance for many practical applications such as antenna sub-reflector, and spatial filters.


2014 ◽  
Vol 28 (17) ◽  
pp. 2197-2209 ◽  
Author(s):  
Jialin Yuan ◽  
Shaobin Liu ◽  
Borui Bian ◽  
Xiangkun Kong ◽  
Haifeng Zhang ◽  
...  

ETRI Journal ◽  
2018 ◽  
Vol 41 (1) ◽  
pp. 117-123 ◽  
Author(s):  
Yang Xiong ◽  
LiTian Wang ◽  
Li Gong ◽  
KaiYong He ◽  
Man Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document