scholarly journals 3D FSS with multiple transmission zeros and pseudo elliptic response

2019 ◽  
Vol 8 (3) ◽  
pp. 923-932
Author(s):  
Bimal Raj Dutta ◽  
Binod Kumar Kanaujia ◽  
Chhaya Dalela

The three-dimensional frequency selective surface (3D FSS) with band reject multiple transmission zeros and pseudo-elliptic response is designed from two-dimensional (2D) periodic array of shielded micro strip lines to realize wide out-of–band radio wave rejection. The 3D FSS array consists of multimode cavities whose coupling with air can be controlled to obtain a desired frequency range. The proposed FSS with shorting via to ground exhibits pseudo-elliptic band-reject response in the frequency range from 6GHz to 14GHz. As the plane wave of linear polarization incidents perpendicularly to the shielded micro strip line with perfect electric conductor (PEC) and perfect magnetic conductor (PMC) boundary walls, two quasi-TEM modes are obtained known as air mode and substrate mode. The first 3D FSS design is a combination of two or more resonators. Furthermore, second 3D FSS design with three shorting vias result more elliptic band reject frequency response and a pass band transmission pole. All in phase resonators of design give transmission poles and out of phase combination of resonators give transmission zeros respectively. The proposed 3D FSS is designed and simulated using Ansys HFSS software. These designs exhibit an improved performance for many practical applications such as antenna sub-reflector, and spatial filters.

2021 ◽  
Vol 35 (12) ◽  
pp. 1548-1555
Author(s):  
Zhengyong Yu ◽  
Wanchun Tang

We present a third-order bandpass three-dimensional frequency selective surface (3D FSS) with multiple transmission zeros in this paper. The unit cell of the proposed 3D FSS consists of an air-filled square waveguide and a cuboid dielectric block with three concentric metallic square loops. Due to its inner electromagnetic coupling in the unit cell, this FSS provides a flat passband with three transmission poles, a wide out-of-band rejection with three transmission zeros, and high frequency selectivity. In order to explain the working principle, an equivalent circuit model is established and investigated. Finally, an FSS prototype is fabricated and measured, and the results exhibit good stability for both TE and TM polarizations under incident angles from 0° to 50°. Besides, this FSS has a relatively compact unit cell.


2019 ◽  
Vol 12 (3) ◽  
pp. 205-211
Author(s):  
Chunyan Gao ◽  
Hongbin Pu ◽  
Shan Gao ◽  
Chunlan Chen ◽  
Yong Yang

AbstractIn this paper, a sandwiched type frequency selective surface (FSS) is designed and analyzed. The design procedure and operating principle is given based on the equivalent circuit model. The proposed FSS includes two identical layers of periodic metallic arrays, which are separated by a foam layer. In each layer of the periodic array, the unit cell is composed of a gridded-triple square loop structure. The FSS provides three pass-bands, in which a flat band response is presented. Three bands are separated by one or two transmission zeros, which leads to a sharp rejection on both sides of each pass-band. The central frequencies of the three pass-bands are 7.0, 10.9 and 14.0 GHz. To verify the simulated results, a prototype of the FSS is fabricated and measured. The simulated results agree well with the measured ones. This work can be used in area of a radar stealth or satellite communication system.


2019 ◽  
Vol 18 (4) ◽  
pp. 596-600 ◽  
Author(s):  
Jianping Zhu ◽  
Zhongyin Hao ◽  
Cheng Wang ◽  
Zhengyong Yu ◽  
Cheng Huang ◽  
...  

2014 ◽  
Vol 28 (17) ◽  
pp. 2197-2209 ◽  
Author(s):  
Jialin Yuan ◽  
Shaobin Liu ◽  
Borui Bian ◽  
Xiangkun Kong ◽  
Haifeng Zhang ◽  
...  

2018 ◽  
Vol 8 (8) ◽  
pp. 1222 ◽  
Author(s):  
Tatjana Gric ◽  
Ortwin Hess

Composites designed by employing metal/dielectric composites coupled to the components of the incident electromagnetic (EM) fields are named metamaterials (MMs), and they display features not observed in nature. This type of artificial media has attracted great interest, resulting in groundbreaking theory that bridges the gap between EM and photonic phenomena. Practical applications of MMs have been delayed due to the high losses related to the use of metallic composites, on top of the challenges in manufacturing nanoscale, three-dimensional structures. Novel materials—for instance, graphene or transparent-conducting oxides (TCOs), employed for the production of multilayered MMs—can significantly suppress undesirable losses. It is worthwhile noting that three-layered nanocomposites enable an increase in the frequency range of the surface wave. This work analyzes recent progress in the physics of multilayered MMs. We deliver an outline of key notions, such as effective medium approximation, and present multilayered MMs based on the three-layered structure. An overview of graphene multilayered MMs reveals their ability to support Ferrell–Berreman (FB) modes. We also describe the tunable properties of the multilayered MMs.


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1027
Author(s):  
Jian Dong ◽  
Yan Ma ◽  
Zhuangzhuang Li ◽  
Jinjun Mo

This paper presents a miniaturized frequency selective surface (FSS) based on the convoluted and interdigitated stripe with multiple narrow passbands/wide stopbands in the L-/S-/C-/X-/Ku-/K-band. By using the convoluted and interdigitated stripe, the coupling inside is well controlled, so that the spatial efficiency is maximized to provide a high miniaturization. An equivalent circuit model is presented to reveal the working mechanism of the proposed FSS. The proposed structure forms four transmission band rejections of 3 dB in 1–6.65 GHz, 8.35–16.9 GHz, 18.0–24 GHz, and 24.50–27.84 GHz. The size of the unit cell is 0.09λ0 × 0.09λ0, where λ0 is the wavelength of the first resonance frequency. The proposed FSS has a good angle stability and polarization stability in a scanning range up to 60°. For verification, an FSS prototype has been fabricated and measured. The measured results were in agreement with the simulated results. The proposed FSS can be used in practical applications such as radomes, antenna reflectors, and spatial filters.


Sign in / Sign up

Export Citation Format

Share Document