Parallel Decomposition Approach to Gradient-Based EM Optimization

2016 ◽  
Vol 64 (11) ◽  
pp. 3380-3399 ◽  
Author(s):  
Venu-Madhav-Reddy Gongal-Reddy ◽  
Feng Feng ◽  
Chao Zhang ◽  
Shunlu Zhang ◽  
Qi-Jun Zhang
2019 ◽  
Vol 23 (11) ◽  
pp. 4561-4582 ◽  
Author(s):  
Robert Reinecke ◽  
Laura Foglia ◽  
Steffen Mehl ◽  
Jonathan D. Herman ◽  
Alexander Wachholz ◽  
...  

Abstract. In global hydrological models, groundwater storages and flows are generally simulated by linear reservoir models. Recently, the first global gradient-based groundwater models were developed in order to improve the representation of groundwater–surface-water interactions, capillary rise, lateral flows, and human water use impacts. However, the reliability of model outputs is limited by a lack of data and by uncertain model assumptions that are necessary due to the coarse spatial resolution. The impact of data quality is presented in this study by showing the sensitivity of a groundwater model to changes in the only available global hydraulic conductivity dataset. To better understand the sensitivity of model output to uncertain spatially distributed parameters, we present the first application of a global sensitivity method for a global-scale groundwater model using nearly 2000 steady-state model runs of the global gradient-based groundwater model G3M. By applying the Morris method in a novel domain decomposition approach that identifies global hydrological response units, spatially distributed parameter sensitivities are determined for a computationally expensive model. Results indicate that globally simulated hydraulic heads are equally sensitive to hydraulic conductivity, groundwater recharge, and surface water body elevation, though parameter sensitivities vary regionally. For large areas of the globe, rivers are simulated to be either losing or gaining, depending on the parameter combination, indicating a high uncertainty in simulating the direction of flow between the two compartments. Mountainous and dry regions show a high variance in simulated head due to numerical instabilities of the model, limiting the reliability of computed sensitivities in these regions. This is likely caused by the uncertainty in surface water body elevation. We conclude that maps of spatially distributed sensitivities can help to understand the complex behavior of models that incorporate data with varying spatial uncertainties. The findings support the selection of possible calibration parameters and help to anticipate challenges for a transient coupling of the model.


2020 ◽  
Vol 68 (12) ◽  
pp. 5288-5306 ◽  
Author(s):  
Wei Zhang ◽  
Feng Feng ◽  
Jianan Zhang ◽  
Zhihao Zhao ◽  
Jianguo Ma ◽  
...  

2019 ◽  
Author(s):  
Saratram Gopalakrishnan ◽  
Satyakam Dash ◽  
Costas Maranas

AbstractKinetic models predict the metabolic flows by directly linking metabolite concentrations and enzyme levels to reaction fluxes. Robust parameterization of organism-level kinetic models that faithfully reproduce the effect of different genetic or environmental perturbations remains an open challenge due to the intractability of existing algorithms. This paper introduces K-FIT, an accelerated kinetic parameterization workflow that leverages a novel decomposition approach to identify steady-state fluxes in response to genetic perturbations followed by a gradient-based update of kinetic parameters until predictions simultaneously agree with the fluxomic data in all perturbed metabolic networks. The applicability of K-FIT to large-scale models is demonstrated by parameterizing an expanded kinetic model forE. coli(307 reactions and 258 metabolites) using fluxomic data from six mutants. The achieved thousand-fold speed-up afforded by K-FIT over meta-heuristic approaches is transformational enabling follow-up robustness of inference analyses and optimal design of experiments to inform metabolic engineering strategies.


2007 ◽  
Vol 51 (1-2) ◽  
pp. 43
Author(s):  
Balázs Polgár ◽  
Endre Selényi
Keyword(s):  

2019 ◽  
Vol 12 (4) ◽  
pp. 192
Author(s):  
Sergey Anatolevich Gayvoronskiy ◽  
Tatiana Ezangina ◽  
Maxim Pushkarev ◽  
Ivan Khozhaev

2019 ◽  
Vol 63 (5) ◽  
pp. 50401-1-50401-7 ◽  
Author(s):  
Jing Chen ◽  
Jie Liao ◽  
Huanqiang Zeng ◽  
Canhui Cai ◽  
Kai-Kuang Ma

Abstract For a robust three-dimensional video transmission through error prone channels, an efficient multiple description coding for multi-view video based on the correlation of spatial polyphase transformed subsequences (CSPT_MDC_MVC) is proposed in this article. The input multi-view video sequence is first separated into four subsequences by spatial polyphase transform and then grouped into two descriptions. With the correlation of macroblocks in corresponding subsequence positions, these subsequences should not be coded in completely the same way. In each description, one subsequence is directly coded by the Joint Multi-view Video Coding (JMVC) encoder and the other subsequence is classified into four sets. According to the classification, the indirectly coding subsequence selectively employed the prediction mode and the prediction vector of the counter directly coding subsequence, which reduces the bitrate consumption and the coding complexity of multiple description coding for multi-view video. On the decoder side, the gradient-based directional interpolation is employed to improve the side reconstructed quality. The effectiveness and robustness of the proposed algorithm is verified by experiments in the JMVC coding platform.


Sign in / Sign up

Export Citation Format

Share Document