Microwave Imaging Using Normal Electric-Field Components Inside Metallic Resonant Chambers

2017 ◽  
Vol 65 (3) ◽  
pp. 923-933 ◽  
Author(s):  
Mohammad Asefi ◽  
Amer Zakaria ◽  
Joe LoVetri
1993 ◽  
Vol 3 (8) ◽  
pp. 1201-1225 ◽  
Author(s):  
G. N�ron de Surgy ◽  
J.-P. Chabrerie ◽  
O. Denoux ◽  
J.-E. Wesfreid

1997 ◽  
Vol 473 ◽  
Author(s):  
Heng-Chih Lin ◽  
Edwin C. Kan ◽  
Toshiaki Yamanaka ◽  
Simon J. Fang ◽  
Kwame N. Eason ◽  
...  

ABSTRACTFor future CMOS GSI technology, Si/SiO2 interface micro-roughness becomes a non-negligible problem. Interface roughness causes fluctuations of the surface normal electric field, which, in turn, change the gate oxide Fowler-Nordheim tunneling behavior. In this research, we used a simple two-spheres model and a three-dimensional Laplace solver to simulate the electric field and the tunneling current in the oxide region. Our results show that both quantities are strong functions of roughness spatial wavelength, associated amplitude, and oxide thickness. We found that RMS roughness itself cannot fully characterize surface roughness and that roughness has a larger effect for thicker oxide in terms of surface electric field and tunneling behavior.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
N. Shahabi ◽  
A. Phirouznia

Abstract The role of staggered potential on light-induced spin and pseudo-spin polarization has been investigated in silicene. It has been shown that non-equilibrium spin and pseudo-spin polarizations are emerged in silicene sheet by applying an external perpendicular electric field in the presence of circularly polarized light emission. This electric field results in pseudo-spin resolved states very close to the Dirac points therefore could be considered as a pseudomagnetic field. It has been shown that staggered potential induced spin-valley locking and pseudo-spin resolved bands are responsible for the enhancement of the spin and pseudo-spin polarizations. Meanwhile, spin-valley locking suggests a coexistence of both spin and valley polarizations with nearly identical (or at least proportional) population imbalance at low Fermi energies which could be employed for magnetic detection of the valley polarization. It has been shown that spin-valley locking results in the protection of the spin polarizations against the relaxations in elastic scattering regime. In addition, the results indicate that the pseudo-spin current can be generated by the circularly polarized light which could be explained by asymmetric light absorption of the states in k-space.


1978 ◽  
Vol 21 (11) ◽  
pp. 2118 ◽  
Author(s):  
James F. Hoburg ◽  
Farrokh Malihi

1997 ◽  
Vol 23 (8) ◽  
pp. 633-634 ◽  
Author(s):  
V. A. Saranin ◽  
A. N. Zharov ◽  
D. F. Belonozhko

Sign in / Sign up

Export Citation Format

Share Document