scholarly journals Low Complexity 54–63-GHz Transmit/Receive 64- and 128-element 2-D-Scanning Phased-Arrays on Multilayer Organic Substrates With 64-QAM 30-Gbps Data Rates

2019 ◽  
Vol 67 (12) ◽  
pp. 5268-5281 ◽  
Author(s):  
Bhaskara Rupakula ◽  
Samet Zihir ◽  
Gabriel M. Rebeiz
2015 ◽  
Vol 4 (1) ◽  
pp. 25-29
Author(s):  
Vidyapogula Naveen ◽  
◽  
S. Thulasi Prasad ◽  

2016 ◽  
Vol 82 (11) ◽  
pp. 3165-3173 ◽  
Author(s):  
Bernhard Tschitschko ◽  
Timothy J. Williams ◽  
Michelle A. Allen ◽  
Ling Zhong ◽  
Mark J. Raftery ◽  
...  

ABSTRACTDeep Lake in the Vestfold Hills is hypersaline and the coldest system in Antarctica known to support microbial growth (temperatures as low as −20°C). It represents a strong experimental model because the lake supports a low-complexity community of haloarchaea, with the three most abundant species totaling ∼72%. Moreover, the dominant haloarchaea are cultivatable, and their genomes are sequenced. Here we use metaproteomics linked to metagenome data and the genome sequences of the isolates to characterize the main pathways, trophic strategies, and interactions associated with resource utilization. The dominance of the most abundant member,Halohasta litchfieldiae, appears to be predicated on competitive utilization of substrates (e.g., starch, glycerol, and dihydroxyacetone) produced byDunaliella, the lake's primary producer, while also possessing diverse mechanisms for acquiring nitrogen and phosphorus. The second most abundant member, strain DL31, is proficient in degrading complex proteinaceous matter.Hht. litchfieldiaeand DL31 are inferred to release labile substrates that are utilized byHalorubrum lacusprofundi, the third most abundant haloarchaeon in Deep Lake. The study also linked genome variation to specific protein variants or distinct genetic capacities, thereby identifying strain-level variation indicative of specialization. Overall, metaproteomics revealed that rather than functional differences occurring at different lake depths or through size partitioning, the main lake genera possess major trophic distinctions, and phylotypes (e.g., strains ofHht. litchfieldiae) exhibit a more subtle level of specialization. This study highlights the extent to which the lake supports a relatively uniform distribution of taxa that collectively possess the genetic capacity to effectively exploit available nutrients throughout the lake.IMPORTANCELife on Earth has evolved to colonize a broad range of temperatures, but most of the biosphere (∼85%) exists at low temperatures (≤5°C). By performing unique roles in biogeochemical cycles, environmental microorganisms perform functions that are critical for the rest of life on Earth to survive. Cold environments therefore make a particularly important contribution to maintaining healthy, stable ecosystems. Here we describe the main physiological traits of the dominant microorganisms that inhabit Deep Lake in Antarctica, the coldest aquatic environment known to support life. The hypersaline system enables the growth of halophilic members of theArchaea: haloarchaea. By analyzing proteins of samples collected from the water column, we determined the functions that the haloarchaea were likely to perform. This study showed that the dominant haloarchaea possessed distinct lifestyles yet formed a uniform community throughout the lake that was collectively adept at using available light energy and diverse organic substrates for growth.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5754
Author(s):  
Mariam Galal ◽  
Wai Pang Ng ◽  
Richard Binns ◽  
Ahmed Abd El Aziz

This paper proposes a low-complexity and energy-efficient light emitting diode (LED)-to-LED communication system for Internet of Things (IoT) devices with data rates up to 200 kbps over an error-free transmission distance up to 7 cm. The system is based on off-the-shelf red-green-blue (RGB) LEDs, of which the red sub-LED is employed as photodetector in photovoltaic mode while the green sub-LED is the transmitter. The LED photodetector is characterized in the terms of its noise characteristics and its response to the light intensity. The system performance is then analysed in terms of bandwidth, bit error rate (BER) and the signal to noise ratio (SNR). A matched filter is proposed, which optimises the performance and increases the error-free distance.


Author(s):  
Costas Chaikalis ◽  
Felip Riera-Palou

Modern and future wireless communication systems such as UMTS and beyond 3G systems (B3G) are expected to support very high data rates to/from mobile users. This poses important challenges on the handset design as they should be able to attain an acceptable operating bit error rate (BER) while employing a limited set of resources (i.e. low complexity, low power) and often, with tight processing delay constraints. In this chapter we study how channel decoding and equalisation, two widely used mechanisms to combat the deleterious channel effects, can be made adaptable in accordance to the instantaneous operating environment. Simulation results are given demonstrating how receiver reconfigurability is a promising method to achieve complexity/delay efficient receivers while maintaining prescribed quality of service (QoS) constraints.


2020 ◽  
Vol 12 (18) ◽  
pp. 2955
Author(s):  
Miguel Hernández-Cabronero ◽  
Jordi Portell ◽  
Ian Blanes ◽  
Joan Serra-Sagristà

The capacity of the downlink channel is a major bottleneck for applications based on remote sensing hyperspectral imagery (HSI). Data compression is an essential tool to maximize the amount of HSI scenes that can be retrieved on the ground. At the same time, energy and hardware constraints of spaceborne devices impose limitations on the complexity of practical compression algorithms. To avoid any distortion in the analysis of the HSI data, only lossless compression is considered in this study. This work aims at finding the most advantageous compression–complexity trade-off within the state of the art in HSI compression. To do so, a novel comparison of the most competitive spectral decorrelation approaches combined with the best performing low-complexity compressors of the state is presented. Compression performance and execution time results are obtained for a set of 47 HSI scenes produced by 14 different sensors in real remote sensing missions. Assuming only a limited amount of energy is available, obtained data suggest that the FAPEC algorithm yields the best trade-off. When compared to the CCSDS 123.0-B-2 standard, FAPEC is 5.0 times faster and its compressed data rates are on average within 16% of the CCSDS standard. In scenarios where energy constraints can be relaxed, CCSDS 123.0-B-2 yields the best average compression results of all evaluated methods.


2009 ◽  
Vol 2009 ◽  
pp. 1-10 ◽  
Author(s):  
Sanam Sadr ◽  
Alagan Anpalagan ◽  
Kaamran Raahemifar

This paper aims to study the performance of low complexity adaptive resource allocation in the downlink of OFDMA systems with fixed or variable rate requirements (with fairness consideration). Two suboptimal resource allocation algorithms are proposed using the simplifying assumption of transmit power over the entire bandwidth. The objective of the first algorithm is to maximize the total throughput while maintaining rate proportionality among the users. The proposed suboptimal algorithm prioritizes the user with the highest sensitivity to the subcarrier allocation, and the variance over the subchannel gains is used to define the sensitivity of each user. The second algorithm concerns rate adaptive resource allocation in multiuser systems with fixed rate constraints. We propose a suboptimal joint subchannel and power allocation algorithm which prioritizes the users with the highest required data rates. The main feature of this algorithm is its low complexity while achieving the rate requirements.


Sign in / Sign up

Export Citation Format

Share Document