Memristive Circuit Implementation of a Self-Repairing Network Based on Biological Astrocytes in Robot Application

Author(s):  
Qinghui Hong ◽  
Hegan Chen ◽  
Jingru Sun ◽  
Chunhua Wang
2020 ◽  
Vol 79 (9) ◽  
pp. 813-827
Author(s):  
H. Li ◽  
X. Lu ◽  
B. Li ◽  
H. Ding ◽  
L. Wang ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1885
Author(s):  
Amjad Almatrood ◽  
Aby K. George ◽  
Harpreet Singh

Quantum-dot cellular automata (QCA) technology is considered to be a possible alternative for circuit implementation in terms of energy efficiency, integration density and switching frequency. Multiplexer (MUX) can be considered to be a suitable candidate for designing QCA circuits. In this paper, two different structures of energy-efficient 2×1 MUX designs are proposed. These MUXes outperform the best existing design in terms of power consumption with approximate reductions of 26% and 35%. Moreover, similar or better performance factors such as area and latency are achieved compared to the available designs. These MUX structures can be used as fundamental energy-efficient building blocks for replacing the majority-based structures in QCA. The scalability property of the proposed MUXes is excellent and can be used for energy-efficient complex QCA circuit designs.


2007 ◽  
Vol 17 (03) ◽  
pp. 837-850 ◽  
Author(s):  
SHIGEKI TSUJI ◽  
TETSUSHI UETA ◽  
HIROSHI KAWAKAMI

The Bonhöffer–van der Pol (BVP) oscillator is a simple circuit implementation describing neuronal dynamics. Lately the diffusive coupling structure of neurons attracts much attention since the existence of the gap-junctional coupling has been confirmed in the brain. Such coupling is easily realized by linear resistors for the circuit implementation, however, there are not enough investigations about diffusively coupled BVP oscillators, even a couple of BVP oscillators. We have considered several types of coupling structure between two BVP oscillators, and discussed their dynamical behavior in preceding works. In this paper, we treat a simple structure called current coupling and study their dynamical properties by the bifurcation theory. We investigate various bifurcation phenomena by computing some bifurcation diagrams in two cases, symmetrically and asymmetrically coupled systems. In symmetrically coupled systems, although all internal elements of two oscillators are the same, we obtain in-phase, anti-phase solution and some chaotic attractors. Moreover, we show that two quasi-periodic solutions disappear simultaneously by the homoclinic bifurcation on the Poincaré map, and that a large quasi-periodic solution is generated by the coalescence of these quasi-periodic solutions, but it disappears by the heteroclinic bifurcation on the Poincaré map. In the other case, we confirm the existence a conspicuous chaotic attractor in the laboratory experiments.


Sign in / Sign up

Export Citation Format

Share Document