scholarly journals Magnet Power Supply Control, of the NSLS VUV and X-Ray Storage Rings, Transfer Lines

1985 ◽  
Vol 32 (5) ◽  
pp. 2020-2022
Author(s):  
J. D. Klein ◽  
S. Ramamoorthy ◽  
O. Singh ◽  
J. D. Smith
1984 ◽  
Author(s):  
Kwang-Je Kim ◽  
Klaus Halbach ◽  
David Attwood
Keyword(s):  

2014 ◽  
Vol 11 (5) ◽  
pp. 599-602
Author(s):  
I. M. Karnaukhov ◽  
D. E. Korzhov ◽  
V. N. Lyaschenko ◽  
A. O. Mytsykov ◽  
V. I. Trotsenko
Keyword(s):  

IUCrJ ◽  
2015 ◽  
Vol 2 (2) ◽  
pp. 230-245 ◽  
Author(s):  
Edgar Weckert

Structural studies in general, and crystallography in particular, have benefited and still do benefit dramatically from the use of synchrotron radiation. Low-emittance storage rings of the third generation provide focused beams down to the micrometre range that are sufficiently intense for the investigation of weakly scattering crystals down to the size of several micrometres. Even though the coherent fraction of these sources is below 1%, a number of new imaging techniques have been developed to exploit the partially coherent radiation. However, many techniques in nanoscience are limited by this rather small coherent fraction. On the one hand, this restriction limits the ability to study the structure and dynamics of non-crystalline materials by methods that depend on the coherence properties of the beam, like coherent diffractive imaging and X-ray correlation spectroscopy. On the other hand, the flux in an ultra-small diffraction-limited focus is limited as well for the same reason. Meanwhile, new storage rings with more advanced lattice designs are under construction or under consideration, which will have significantly smaller emittances. These sources are targeted towards the diffraction limit in the X-ray regime and will provide roughly one to two orders of magnitude higher spectral brightness and coherence. They will be especially suited to experiments exploiting the coherence properties of the beams and to ultra-small focal spot sizes in the regime of several nanometres. Although the length of individual X-ray pulses at a storage-ring source is of the order of 100 ps, which is sufficiently short to track structural changes of larger groups, faster processes as they occur during vision or photosynthesis, for example, are not accessible in all details under these conditions. Linear accelerator (linac) driven free-electron laser (FEL) sources with extremely short and intense pulses of very high coherence circumvent some of the limitations of present-day storage-ring sources. It has been demonstrated that their individual pulses are short enough to outrun radiation damage for single-pulse exposures. These ultra-short pulses also enable time-resolved studies 1000 times faster than at standard storage-ring sources. Developments are ongoing at various places for a totally new type of X-ray source combining a linac with a storage ring. These energy-recovery linacs promise to provide pulses almost as short as a FEL, with brilliances and multi-user capabilities comparable with a diffraction-limited storage ring. Altogether, these new X-ray source developments will provide smaller and more intense X-ray beams with a considerably higher coherent fraction, enabling a broad spectrum of new techniques for studying the structure of crystalline and non-crystalline states of matter at atomic length scales. In addition, the short X-ray pulses of FELs will enable the study of fast atomic dynamics and non-equilibrium states of matter.


2014 ◽  
Vol 30 (1) ◽  
pp. 36-39
Author(s):  
Ying Liu ◽  
Susumu Imashuku ◽  
Jun Kawai

An X-ray diffractometer (XRD) was modified to a low-power total reflection X-ray fluorescence (TXRF) spectrometer. This was realized by reducing the XRD tube power (3 kW) down to 10 W by a Spellman power supply. The present spectrometer consisted of a waveguide slit, Si-PIN detector, a goniometer and two Z-axis stages that were set on a diffractometer guide rail. This unit was easy in assembly. The first measurements with this spectrometer were presented. The minimum detection limit for Cr was estimated to be a few nanograms or at the level of 1013 atoms cm−2.


1971 ◽  
Vol 15 ◽  
pp. 285-294 ◽  
Author(s):  
J. H. McCrary ◽  
Ted Van Vorous

Recently developed, miniature, steady state, field emission tubes are finding application in several areas of x-ray analysis. These tubes require only a high voltage, low current power supply to produce relatively intense beams of x-rays. Since anodes can be fabricated from almost any element, and since the tubes can be operated at potentials up to about 70 kV, many different output x-ray spectra are available. Miniaturized battery operated x-ray sources of this type, occupying a volume of about one liter, have several advantages over radioisotope sources. These include cost, safety, and controllable output spectra and intensity. X-ray sources for energy dispersive fluorescence analyzers are designed so that no scattered characteristic radiations will interfer with the analysis of the sample fluorescence. Sources which are essentially monoenergetic can be fabricated for use in non-dispersive x-ray fluorescence analyzers. Because of the intensity and safety of the field emission tubes, such analyzers can be made which are sensitive while compact, portable, and inexpensive. In x-ray absorption analysis the measurement of absorption edge jump ratios provides a quantitative measure of sample impurities. Field emission tubes whose output spectra consist primarily of bremsstrahlung are particularly well suited to such measurements. The techniques involved in using these tubes in x-ray analysis are described.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
J.-G. Hwang ◽  
G. Schiwietz ◽  
M. Abo-Bakr ◽  
T. Atkinson ◽  
M. Ries ◽  
...  

2019 ◽  
Vol 62 (5) ◽  
pp. 640-645 ◽  
Author(s):  
A. A. Trubitsyn ◽  
E. Yu. Grachev ◽  
D. A. Morozov ◽  
B. A. Polonsky ◽  
A. E. Serebryakov

2014 ◽  
Vol 21 (5) ◽  
pp. 961-967 ◽  
Author(s):  
Xiaobiao Huang ◽  
Thomas Rabedeau ◽  
James Safranek

Approaches to generating short X-ray pulses in synchrotron light sources are discussed. In particular, the method of using a superconducting harmonic cavity to generate simultaneously long and short bunches in storage rings and the approach of injecting short bunches from a linac injector into a storage ring for multi-turn circulation are emphasized. If multi-cell superconducting RF (SRF) cavities with frequencies of ∼1.5 GHz can be employed in storage rings, it would be possible to generate stable, high-flux, short-pulse X-ray beams with pulse lengths of 1–10 ps (FWHM) in present or future storage rings. However, substantial challenges exist in adapting today's high-gradient SRF cavities for high-current storage ring operation. Another approach to generating short X-ray pulses in a storage ring is injecting short-pulse electron bunches from a high-repetition-rate linac injector for circulation. Its performance is limited by the microbunching instability due to coherent synchrotron radiation. Tracking studies are carried out to evaluate its performance. Challenges and operational considerations for this mode are considered.


Sign in / Sign up

Export Citation Format

Share Document