Generalized Closed-Loop Control Schemes with Embedded Virtual Impedances for Voltage Source Converters with LC or LCL Filters

2012 ◽  
Vol 27 (4) ◽  
pp. 1850-1861 ◽  
Author(s):  
Jinwei He ◽  
Yun Wei Li
Author(s):  
Daniel Guyot ◽  
Christian Oliver Paschereit

Active instability control was applied to an atmospheric swirl-stabilized premixed combustor using open loop and closed loop control schemes. Actuation was realised by two on-off valves allowing for symmetric and asymmetric modulation of the premix fuel flow while maintaining constant time averaged overall fuel mass flow. Pressure and heat release fluctuations in the combustor as well as NOx, CO and CO2 emissions in the exhaust were recorded. In the open loop circuit the heat release response of the flame was first investigated during stable combustion. For symmetric fuel modulation the dominant frequency in the heat release response was the modulation frequency, while for asymmetric modulation it was its first harmonic. In stable open loop control a reduction of NOx emissions due to fuel modulation of up to 19% was recorded. In the closed loop mode phase-shift control was applied while triggering the valves at the dominant oscillation frequency as well as at its second subharmonic. Both, open and closed loop control schemes were able to successfully control a low-frequency combustion instability, while showing only a small increase in NOx emissions compared to, for example, secondary fuel modulation. Using premixed open loop fuel modulation, attenuation was best when modulating the fuel at frequencies different from the dominant instability frequency and its subharmonic. The performance of asymmetric fuel modulation was generally slightly better than for symmetric modulation in terms of suppression levels as well as emissions. Suppression of the instability’s pressure rms level of up to 15.7 dB was recorded.


Permanent magnet synchronous machines have been universally used over induction machines in variable speed drives. For present trends and future developments, power electronics technology gives the extensive research of multilevel inverters that brings high safety voltages with low harmonic content in comparison with two-level inverter strategies. Multi level inverters implementation can be done by raising the number of power semi conductor controlled switching devices per phase to increase the number of inverter output voltage levels. By increasing the levels, power controlled switching devices and other components are increased, which makes the inverter complex and overpriced. From the above aspects, three-phase three-level inverter strategy is used for high performance and high voltage A.C drives. Multilevel inverter using a space vector pulse width modulation (SVPWM) strategy gives great advantages in high performance A.C drive applications. Various types of control strategies have been recommended for voltage source inverter fed A.C drives. In the proposed work, a PI controller is designed for the outer loop and non-linear controller using a state feedback linearization technique is designed for the inner loop. The closed loop control system for three-level inverter fed Permanent magnet synchronous motor drive employing SVPWM is extensively simulated using MATLAB.


Sign in / Sign up

Export Citation Format

Share Document