Adaptive Control of a Voltage Source Converter for Power Factor Correction

2013 ◽  
Vol 28 (10) ◽  
pp. 4767-4779 ◽  
Author(s):  
Rasoul M. Milasi ◽  
Alan F. Lynch ◽  
Yun Wei Li
2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Alka Singh

This paper deals with the control of distribution energy resource (DER) connected to a grid connected system feeding nonlinear loads. The DER is controlled to provide power quality improvement capabilities, namely, power factor correction, harmonic reduction, and load balancing. The developed controller is based on modification of synchronous reference theory. It possesses unique features such as filtration and fundamental voltage extraction from the polluted grid voltages to eliminate harmonics and unbalance. Additionally, the control is implemented over the square of DC link voltage. The distributed generation source is realized as a voltage source converter. Both simulation and experimental results prove the effectiveness of control algorithm with nonlinear loads. The control algorithm works well for power factor correction, harmonic reduction, and operation under unbalanced load condition. The dynamics of the system under load change and load unbalancing are well depicted.


2021 ◽  
Vol 23 (07) ◽  
pp. 678-689
Author(s):  
Bilal Ahmad Ganie ◽  
◽  
Dr. (Mrs.) Lini Mathew ◽  

This study provides an adaptive control approach of VSC (voltage source converter) coupled with SPV (solar photovoltaic array), in a 3P3W (three-phase three-wire) system with three single-phase non-linear loads having Distributed Static Compensator (DSTATCOM) abilities using P and O (perturb & observe) methodology. The adaptive control technique converges quickly and has a low mean square error. For the correction of power factor and zero voltage regulation modes, the system is studied and simulated. The system’s great efficacy at high voltages is due to its one-stage structure. Grid current harmonics are significantly below the IEEE-519 norm. The suggested system is modeled and simulated with the available sim power system toolbox in MATLAB/Simulink, and the system’s behavior under different loads and environmental circumstances is confirmed.


Processes ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 490 ◽  
Author(s):  
Yueping Jiang ◽  
Xue Jin ◽  
Hui Wang ◽  
Yihao Fu ◽  
Weiliang Ge ◽  
...  

Voltage source converter (VSC) has been extensively applied in renewable energy systems which can rapidly regulate the active and reactive power. This paper aims at developing a novel optimal nonlinear adaptive control (ONAC) scheme to control VSC in both rectifier mode and inverter mode. Firstly, the nonlinearities, parameter uncertainties, time-varying external disturbances, and unmodelled dynamics can be aggregated into a perturbation, which is then estimated by an extended state observer (ESO) called high-gain perturbation observer (HGPO) online. Moreover, the estimated perturbation will be fully compensated through state feedback. Besides, the observer gains and controller gains are optimally tuned by a recent emerging biology-based memetic salp swarm algorithm (MSSA), the utilization of such method can ensure a desirably satisfactory control performance. The advantage of ONAC is that even though the operation conditions are constantly changing, the control performance can still be maintained to be globally consistent. In addition, it is noteworthy that in rectifier mode only the reactive power and DC voltage are required to be measured, while in inverter mode merely the reactive power and active power have to be measured. At last, in order to verify the feasibility of ONAC in practical application, a hardware experiment is implemented.


2009 ◽  
Vol 42 (9) ◽  
pp. 356-361
Author(s):  
A. ABOULOIFA ◽  
F. GIRI ◽  
I. LACHKAR ◽  
F.Z. CHAOUI ◽  
A. El MAGRI

2009 ◽  
Vol 57 (2) ◽  
pp. 157-169 ◽  
Author(s):  
Y. Han ◽  
M. Khan ◽  
L. Xu ◽  
G. Yao ◽  
L. Zhou ◽  
...  

A new scheme for power factor correction and active filtering for six-pulse converters loads This paper presents a novel harmonic-free power factor correction (PFC) topology based on T-type active power filter (APF), which is dedicated for power factor improvement and harmonic filtering for six-pulse converter loads. The cascaded controller structure is adopted for the proposed system, namely, the inner current loop and outer voltage loop. The current-loop control scheme is based on a decoupled state-space equations of the T-type APF using separate proportional-integral (PI) controllers in d-axis and q-axis of the synchronous rotating reference frame (SRRF) synchronized with grid voltages, respectively. The fundamental components of load-side currents are feed forwarded in the current-loop using two groups of synchronous frame adaptive linear neural networks (ADALINEs) to ensure estimation accuracy and a fast dynamic response. A separate proportional-integral (PI) controller is adopted in the outer voltage loop for balancing the active power flow of the voltage source inverter (VSI) dc-side capacitor. The experimental results confirm well with the theoretical analysis.


2014 ◽  
Vol 05 (01) ◽  
pp. 1-11 ◽  
Author(s):  
Amine Toumi ◽  
Mohamed Radhouan Hachicha ◽  
Moez Ghariani ◽  
Rafik Neji

Author(s):  
MOH. ZAENAL EFENDI ◽  
DEWI KUSUMA WATI ◽  
LUCKY PRADIGTA SETIYA RAHARJA

ABSTRAKPeralatan elektronika umumnya memerlukan catu daya berupa sumber tegangan DC yang berasal dari sumber tegangan AC 220 V yang disearahkan menggunakan penyearah gelombang penuh. Pemasangan filter kapasitor pada sisi output penyearah menyebabkan bentuk gelombang arus masukan terdistorsi sehingga menimbulkan arus harmonisa yang mengakibatkan nilai faktor daya menjadi rendah. Artikel ini membahas mengenai paralel flyback konverter sebagai PFC (Power Factor Correction) pada lampu LED 36 V/60 W menggunakan algoritma fuzzy type-2. Flyback konverter pertama sebagai regulator tegangan DC bekerja dalam kondisi CCM (Continuous Conduction Mode). Flyback konverter kedua sebagai PFC bekerja dalam kondisi DCM (Discontinuous Conduction Mode) sehingga konverter bersifat resistif. Hasil simulasi menunjukkan bahwa paralel flyback konverter dapat memperbaiki faktor daya dari 0.597 menjadi 0.903 dan dapat menjaga tegangan keluaran konstan sebesar 36 V menggunakan algoritma fuzzy type-2 serta arus input yang dihasilkan memenuhi standar internasional hamonisa IEC61000-3-2 kelas C.Kata kunci: PFC, flyback konverter, IEC61000-3-2, lampu LED, fuzzy type-2 ABSTRACTElectronic equipment generally requires a DC voltage source that comes from a rectified 220 AC voltage source using full-wave rectifier. Installing capacitor filter on the output of rectifier makes the input current waveform becoming distorted that cause harmonic current which results in low power factor value. This article discusses parallel flyback converter as PFC (Power Factor Correction) on 36 V/60 W LED lamp using fuzzy type-2 algorithm. The first flyback converter as voltage dc regulator works in CCM (Continuous Conduction Mode). The second flyback converter as PFC works in DCM (Discontinuous Conduction Mode) to make the resistive converter. The simulation results shows the parallel flyback converter can improve the power factor from 0.597 to become 0.903 and can maintain a constant output voltage of 36 V using fuzzy type-2 algorithm and the input current meets the international harmonics standard of IEC61000-3-2 class C.Keywords: PFC, flyback converter, IEC61000-3-2, LED lamp, fuzzy type-2


Sign in / Sign up

Export Citation Format

Share Document