Establishing Harmonic Distortion Level of Distribution Network Based on Stochastic Aggregate Harmonic Load Models

2007 ◽  
Vol 22 (2) ◽  
pp. 1086-1092 ◽  
Author(s):  
Mau Teng Au ◽  
J.V. Milanovic
2021 ◽  
Vol 11 (4) ◽  
pp. 7311-7320
Author(s):  
I. C. Barutcu

Harmonic penetration can be problematic by the growing interconnection of Wind Turbines (WTs) in distribution networks. Since the active power outputs of WTs and loads in the distribution system have uncertainties, the optimal WT penetration level problem can be considered to have a stochastic nature. In this study, this problem is taken into account in the stochastic optimization method with the consideration of uncertainties in wind speed and distribution network load profile. Chance constraint programming is taken into account in the determination of optimal WT penetration levels by applying the Genetic Algorithm (GA) along with Monte Carlo Simulation (MCS). The harmonic power flow analysis based on the decoupled harmonic load flow approach is employed in the distorted distribution network. Chance constraints are considered for the harmonic issues such as the Total Harmonic Distortion of Voltage (VTHD), Individual Harmonic Distortion of Voltage (VIHDh), and Root Mean Square of Voltage (VRMS).


Author(s):  
Akram Qashou ◽  
Sufian Yousef ◽  
Abdallah A. Smadi ◽  
Amani A. AlOmari

AbstractThe purpose of this paper is to describe the design of a Hybrid Series Active Power Filter (HSeAPF) system to improve the quality of power on three-phase power distribution grids. The system controls are comprise of Pulse Width Modulation (PWM) based on the Synchronous Reference Frame (SRF) theory, and supported by Phase Locked Loop (PLL) for generating the switching pulses to control a Voltage Source Converter (VSC). The DC link voltage is controlled by Non-Linear Sliding Mode Control (SMC) for faster response and to ensure that it is maintained at a constant value. When this voltage is compared with Proportional Integral (PI), then the improvements made can be shown. The function of HSeAPF control is to eliminate voltage fluctuations, voltage swell/sag, and prevent voltage/current harmonics are produced by both non-linear loads and small inverters connected to the distribution network. A digital Phase Locked Loop that generates frequencies and an oscillating phase-locked output signal controls the voltage. The results from the simulation indicate that the HSeAPF can effectively suppress the dynamic and harmonic reactive power compensation system. Also, the distribution network has a low Total Harmonic Distortion (< 5%), demonstrating that the designed system is efficient, which is an essential requirement when it comes to the IEEE-519 and IEC 61,000–3-6 standards.


2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Dalila M.S. ◽  
Zaris I.M.Y. ◽  
Nasarudin A. ◽  
Faridah H.

This paper purposely to examine and analyse the impact of the distribution capacitors banks operation to the transition of total harmonic distortion (THD) level in distribution network system. The main advantage of this work is the simplicity algorithm of the method and the system being analysed using free access open software which is known as electric power distribution system simulator (OpenDSS). In this paper, the harmonic current spectrum which is collected from the commercial site was injected to a node point on IEEE13 bus in order to provide the initial measurement of THD for the network. The proper sizing of the capacitors banks has been set and being deactivated and activated throughout the network to see the transistion in the THD level in the system. The results were achieved by simulation of the data on the configured IEEE13 bus. The simulation work was done by using the combination of C++ source codes, OpenDSS and Microsoft Excel software. From the output results, the THD current has increased up to two times from the initial value in certain phases and for the THD voltage, the THD has increased up to three times from its initial value in all phases.


2018 ◽  
Vol 5 (2) ◽  
pp. 167
Author(s):  
I G.N Nanda Ramdipa Amerta ◽  
I Wayan Rinas ◽  
I G.N Janardana

Harmonics is a periodic sine wave distortion, due to the operation of nonlinear loads. Har-monics causes current to flow in the neutral wire even though in a balanced load condition, in addition to harmonic load imbalance problems will increase the current flowing in the neutral wire, making it dangerous for the electrical system. This research was using electrical system modeling simulation in MATLAB application by changing the earth resistance value to see the effect of earth resistance value to Total Harmonic Current Distortion (THDi), it is necessary to analyze the effect of resistance value for THDi neutral wire grounding. This study uses the Fast Fourier Transform (FFT) method. THDi simulation results when the conditions of the resistance value is 9 ?, THDi percentage in phase R is 6.30%, Phase S is 2.86%, Phase T is 2.50%. When the earth resistance value is 5 ?, the percentage of THDi decreases with the value in phase R is 6.09%, Fasa S is 2.61%, Fasa T is 2.48%. When the earth resistance value is 2 ?, the THDi percentage in the R phase is 5.85%, Fasa S is 2.09%, Fasa T is 2.22%. Based on the simulation results it is known that the smaller the earth resistance value, the smaller the harmonic distortion in the electrical system.


Sign in / Sign up

Export Citation Format

Share Document