scholarly journals Examination of the Chance Constrained Optimal WT Penetration Level in Distorted Distribution Network with Wind Speed and Load Uncertainties

2021 ◽  
Vol 11 (4) ◽  
pp. 7311-7320
Author(s):  
I. C. Barutcu

Harmonic penetration can be problematic by the growing interconnection of Wind Turbines (WTs) in distribution networks. Since the active power outputs of WTs and loads in the distribution system have uncertainties, the optimal WT penetration level problem can be considered to have a stochastic nature. In this study, this problem is taken into account in the stochastic optimization method with the consideration of uncertainties in wind speed and distribution network load profile. Chance constraint programming is taken into account in the determination of optimal WT penetration levels by applying the Genetic Algorithm (GA) along with Monte Carlo Simulation (MCS). The harmonic power flow analysis based on the decoupled harmonic load flow approach is employed in the distorted distribution network. Chance constraints are considered for the harmonic issues such as the Total Harmonic Distortion of Voltage (VTHD), Individual Harmonic Distortion of Voltage (VIHDh), and Root Mean Square of Voltage (VRMS).

Author(s):  
Fredrick Nkado ◽  
Franklin Nkado

Recently, the demand for electrical energy has increased more than energy production due to the growing population and industrialization. Therefore, the distributed generators integration (DGs) into the distribution system has been widely adopted. This work examines the effect of photovoltaic-based distributed generator (PV-DG) integration on power quality effect of a radial distribution system. Firstly, the capacity and optimum placement of the PV-DG units in the distribution network are determined by employing the particle swarm optimization (PSO) algorithm. Then, the impact of PV-DG integration on voltage harmonic distortion is analyzed by performing harmonic load flow analysis. Also, the P-V curve method is used to evaluate the effects of higher PV-DG penetration levels on loading margin and voltage magnitude. The simulation results show that as the PV-DG units’ penetration level increases, a greater level of harmonic distortion is injected, implying that the PV-DG units should only be integrated up to the network’s maximum capacity. Therefore, high harmonic distortion is produced when the PV-DG units are penetrated beyond this maximum penetration level, which has a negative impact on the system’s performance. The total voltage harmonic distortion is 4.17 % and 4.24 % at PCC1 and PCC2 at the highest penetration level, allowing the acceptable harmonic distortion limit. Also, grid-connected PV-DG units improve loading margin and voltage magnitude, according to the P-V curve results. The standard IEEE-33 bus distribution system is modelled in ETAP software and is used as a test system for this study.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2738
Author(s):  
Ayşe Aybike Şeker ◽  
Tuba Gözel ◽  
Mehmet Hakan Hocaoğlu

The topology of a distribution network can be represented by a bus injection to branch current (BIBC) matrix. It has been introduced and used for load flow analysis of distribution networks. In this paper, a method for BIBC matrix modification is developed to use in applications which require a topology change representation. Proposed method that reflects the changes in configuration in the system BIBC matrix is implemented in distribution network reconfiguration problem. With providing potential solutions for network operational and planning requirements such as necessitate changes in configurations to transfer the loads to a different substation, ease the loading of equipment, conduct planned maintenance and reduce network losses during the normal operation with renewables, storage and other uprising technologies, reconfiguration may also be useful for emergencies, accidents, attacks and weather-related disasters. The BIBC modification process provides the knowledge of possible switches to open and the direction of power flow without any need to further radiality or continuity check. The proposed method needs only initial network topology information that makes it suitable to apply on any distribution network and to use with any search method or heuristic/meta-heuristic optimization algorithm. Efficiency of the method is investigated on systems with voltage dependent and time varying loads.


The Distributed generation and fast operating power electronic devices are attracting more attention due to their effective solution for improvement in the voltage profile, to meet the increasing power consumption, reduction in the power loss, enhancement in the power transfer capacity of the transmission lines, reducing the overloading of the entire network. The optimal placement of DG and FACTs devices plays key role in improvement of the network reliability and voltage stability. In this paper exhaustive load flow analysis is carried out for optimal placement of DG and UPFC. The proposed method is tested on 40 bus distribution network. The obtained results are satisfactory in terms of improvement in the overall performance of the distribution network.


A new technique for energy loss reduction for distribution networks is obtainable. It is based onnetwork reconfigurationand algorithms for radial network study. A method for the reconfiguration of distribution system with Distributed Generation (DG) since consistency and power loss is suggested. in this paper below ordinary working situations. Primarily a BPSO algorithm based tie-switches location is conceded out at end nodes taking physical limitations and then preceded by fixing and sizing of DG at the tie-switches location usingFBS optimization method. Before reconfiguration, tieswitch will be in open situation. Reliability at load points is calculated using load flow analysis.Energetic coding is used for discovery the minimal shortcut path from resource to the load. A discover algorithm has been formulate for the network reconfiguration difficulty, since tie-switch and DGs for loss minimization and reliability to improve the load necessity, power stability equations and voltage parameters. The planned approach has been tested on IEEE 33-node radial distribution Networks systems.


2018 ◽  
Vol 5 (2) ◽  
pp. 1
Author(s):  
Salim Afif ◽  
I W. Sukerayasa ◽  
W. G. Ariastina

Menjangan feeder is a medium-voltage network system which distributes electricity throughout Gilimanuk and some areas in Buleleng. It has 69 distribution substations, which one of them, substation GR088, contributes to the highest value of the total harmonic distortion (THDi). In this research, the effect of harmonic distortions on losses at low voltage system of substation GR088 will be evaluated.The method used in this study is direct measurement of harmonic distortions at each low-voltage costumer whose electricity is generated by substation GR088 at Menjangan Feeder. Software is also used to perform harmonic load flow analysis and simulations. The total value of losses on transformer and low voltage system of substation GR088 Menjangan feeder, in a no-harmonic condition is 1481,7 Watt. On under-harmonic condition, the total value of losses is 1552,5 Watt. Therefore there is a 70,8 Watt difference between the two conditions. At this case, beside the heat created by the harmonic distortion that can affect the performance of transformers, it also cause a quite great value of losses, which is 1,7 kWh per day, or approximately 620 kWh per year. It means the harmonic distortion in substation GR088 can cause PT PLN (Persero) lose Rp.910.018,8 per year.


2021 ◽  
Vol 17 (2) ◽  
pp. 212-218
Author(s):  
Mahdi Mozaffarilegha ◽  
Ehsan Damaneh

Selection of the best type and most suitable size of conductors is essential for designing and optimizing the distribution network. In this paper, an effective method has been proposed for proper selection and incorporation of conductors in the feed part of a radial electricity distribution network considering the depreciation effect of conductors. Increasing the usability of the electric energy of the power grid for the subscribers has been considered per load increment regarding the development of the country. Optimal selection and reconstruction of conductors in the power distribution radio network have been performed through a smart method for minimizing the costs related to annual losses and investment for renovation of lines by imperialist competitive algorithm (ICA) to improve the productivity of the power distribution network. Backward/forward sweep load flow method has been used to solve the load flow problem in the power distribution networks. The mentioned optimization method has been tested on DAZ feeder in Ghaleganj town as test.


Author(s):  
Mandhir Kumar Verma ◽  
Vinod Kumar Yadav ◽  
Vivekananda Mukherjee ◽  
Santosh Ghosh

Abstract Power distribution network expansion planning (DNEP), based on innovative load flow analysis and optimization techniques, has drawn great attention of researchers around the world to cater for ever increasing demand of electrical power. In the present work, a new approach based on Multi-criteria Data Envelopment Analysis and Shannon Entropy analysis (MCDEA-SEA) is presented that strengthens the solution hunt process of DNEP problems. In the first stage of proposed methodology, various probable configurations are determined through load flow analysis considering different objective functions and constraints. In the next stage, large amount of complex data sets generated for various configurations from power flow perusal, then analyzed using pooled MCDEA-SEA. This multi-stage approach expedites search for best and impeccable solution, which leaves no space for sub-optimality. The efficacy of the proposed method has been verified by applying it on IEEE 33-bus test distribution system, considering impending load scenarios and the results show that the proposed methodology can effectively solve DNEP problem and provide optimal solution for DNEP problems, consuming lesser computation time compared to conventional approaches.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7857
Author(s):  
Ferdous Al Hossain ◽  
Md. Rokonuzzaman ◽  
Nowshad Amin ◽  
Jianmin Zhang ◽  
Mahmuda Khatun Mishu ◽  
...  

Distributed generation (DG) is gaining importance as electrical energy demand increases. DG is used to decrease power losses, operating costs, and improve voltage stability. Most DG resources have less environmental impact. In a particular region, the sizing and location of DG resources significantly affect the planned DG integrated distribution network (DN). The voltage profiles of the DN will change or even become excessively increased. An enormous DG active power, inserted into an improper node of the distribution network, may bring a larger current greater than the conductor’s maximum value, resulting in an overcurrent distribution network. Therefore, DG sizing and DG location optimization is required for a systematic DG operation to fully exploit distributed energy and achieve mutual energy harmony across existing distribution networks, which creates an economically viable, secure, stable, and dependable power distribution system. DG needs to access the location and capacity for rational planning. The objective function of this paper is to minimize the sum of investment cost, operation cost, and line loss cost utilizing DG access. The probabilistic power flow calculation technique based on the two-point estimation method is chosen for this paper’s load flow computation. The location and size of the DG distribution network are determined using a genetic algorithm in a MATLAB environment. For the optimum solution, the actual power load is estimated using historical data. The proposed system is based on the China distribution system, and the currency is used in Yuan. After DG access, active and reactive power losses are reduced by 53% and 26%, respectively. The line operating cost and the total annual cost are decreased by 53.7% and 12%, respectively.


Sign in / Sign up

Export Citation Format

Share Document