scholarly journals Analysis on the Effect of Capacitor Banks Operation towards Total Harmonic Distortions (THD) in Distribution Network Test System

2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Dalila M.S. ◽  
Zaris I.M.Y. ◽  
Nasarudin A. ◽  
Faridah H.

This paper purposely to examine and analyse the impact of the distribution capacitors banks operation to the transition of total harmonic distortion (THD) level in distribution network system. The main advantage of this work is the simplicity algorithm of the method and the system being analysed using free access open software which is known as electric power distribution system simulator (OpenDSS). In this paper, the harmonic current spectrum which is collected from the commercial site was injected to a node point on IEEE13 bus in order to provide the initial measurement of THD for the network. The proper sizing of the capacitors banks has been set and being deactivated and activated throughout the network to see the transistion in the THD level in the system. The results were achieved by simulation of the data on the configured IEEE13 bus. The simulation work was done by using the combination of C++ source codes, OpenDSS and Microsoft Excel software. From the output results, the THD current has increased up to two times from the initial value in certain phases and for the THD voltage, the THD has increased up to three times from its initial value in all phases.

Author(s):  
Zuhaila Mat Yasin ◽  
Izni Nadhirah Sam’ón ◽  
Norziana Aminudin ◽  
Nur Ashida Salim ◽  
Hasmaini Mohamad

<p>Monitoring fault current is very important in power system protection. Therefore, the impact of installing Distributed Generation (DG) on the fault current is investigated in this paper. Three types of fault currents which are single line-to-ground, double line-to-ground and three phase fault are analyzed at various fault locations. The optimal location of DG was identified heuristically using power system simulation program for planning, design and analysis of distribution system (PSS/Adept). The simulation was conducted by observing the power losses of the test system by installing DG at each load buses. Bus with minimum power loss was chosen as the optimal location of DG. In order to study the impact of DG to the fault current, various locations and sizes of DG were also selected. The simulations were conducted on IEEE 33-bus distribution test system and IEEE 69-bus distribution test system. The results showed that the impact of DG to the fault current is significant especially when fault occurs at busses near to DG location.</p>


Author(s):  
Akram Qashou ◽  
Sufian Yousef ◽  
Abdallah A. Smadi ◽  
Amani A. AlOmari

AbstractThe purpose of this paper is to describe the design of a Hybrid Series Active Power Filter (HSeAPF) system to improve the quality of power on three-phase power distribution grids. The system controls are comprise of Pulse Width Modulation (PWM) based on the Synchronous Reference Frame (SRF) theory, and supported by Phase Locked Loop (PLL) for generating the switching pulses to control a Voltage Source Converter (VSC). The DC link voltage is controlled by Non-Linear Sliding Mode Control (SMC) for faster response and to ensure that it is maintained at a constant value. When this voltage is compared with Proportional Integral (PI), then the improvements made can be shown. The function of HSeAPF control is to eliminate voltage fluctuations, voltage swell/sag, and prevent voltage/current harmonics are produced by both non-linear loads and small inverters connected to the distribution network. A digital Phase Locked Loop that generates frequencies and an oscillating phase-locked output signal controls the voltage. The results from the simulation indicate that the HSeAPF can effectively suppress the dynamic and harmonic reactive power compensation system. Also, the distribution network has a low Total Harmonic Distortion (< 5%), demonstrating that the designed system is efficient, which is an essential requirement when it comes to the IEEE-519 and IEC 61,000–3-6 standards.


2020 ◽  
Vol 12 (10) ◽  
pp. 4317
Author(s):  
K. Prakash ◽  
F. R. Islam ◽  
K. A. Mamun ◽  
H. R. Pota

A distribution network is one of the main parts of a power system that distributes power to customers. While there are various types of power distribution networks, a recently introduced novel structure of an aromatic network could begin a new era in the distribution levels of power systems and designs of microgrids or smart grids. In order to minimize blackout periods during natural disasters and provide sustainable energy, improve energy efficiency and maintain stability of a distribution network, it is essential to configure/reconfigure the network topology based on its geographical location and power demand, and also important to realize its self-healing function. In this paper, a strategy for reconfiguring aromatic networks based on structures of natural aromatic molecules is explained. Various network structures are designed, and simulations have been conducted to justify the performance of each configuration. It is found that an aromatic network does not need to be fixed in a specific configuration (i.e., a DDT structure), which provides flexibility in designing networks and demonstrates that the successful use of such structures will be a perfect solution for both distribution networks and microgrid systems in providing sustainable energy to the end users.


2014 ◽  
Vol 986-987 ◽  
pp. 187-191
Author(s):  
Bo Zeng ◽  
Kai Wang ◽  
Xiang Yu Kong ◽  
Yi Zeng ◽  
Qun Yang

With high penetration of distributed generation connected to the grid, distribution system will have some huge impacts, and system reliability calculation models and assessment methods are changing. Based on Monte-Carlo method, a heuristic reliability analysis method for distribution system with distributed generations was proposed in the paper, which focuses on the mode of distributed generation in parallel to system power supply. Functional role of distributed generation in the power distribution system failure and distributed power adapter with load strategies were analyzed in this method. Cases simulation analysis was used to verify its effectiveness.


Author(s):  
Aziah Khamis ◽  
Yan Xu ◽  
Azah Mohamed

A comprehensive comparison study on the datamining based approaches for detecting islanding events in a power distribution system with inverter-based distributed generations is presented. The important features for each phase in the island detection scheme are investigated in detail. These features are extracted from the time-varying measurements of voltage, frequency and total harmonic distortion (THD) of current and voltage at the point of common coupling. Numerical studies were conducted on the IEEE 34-bus system considering various scenarios of islanding and non-islanding conditions. The features obtained are then used to train several data mining techniques such as decision tree, support vector machine, neural network, bagging and random forest (RF). The simulation results showed that the important feature parameters can be evaluated based on the correlation between the extracted features. From the results, the four important features that give accurate islanding detection are the fundamental voltage THD, fundamental current THD, rate of change of voltage magnitude and voltage deviation. Comparison studies demonstrated the effectiveness of the RF method in achieving high accuracy for islanding detection.


Author(s):  
Fredrick Nkado ◽  
Franklin Nkado

Recently, the demand for electrical energy has increased more than energy production due to the growing population and industrialization. Therefore, the distributed generators integration (DGs) into the distribution system has been widely adopted. This work examines the effect of photovoltaic-based distributed generator (PV-DG) integration on power quality effect of a radial distribution system. Firstly, the capacity and optimum placement of the PV-DG units in the distribution network are determined by employing the particle swarm optimization (PSO) algorithm. Then, the impact of PV-DG integration on voltage harmonic distortion is analyzed by performing harmonic load flow analysis. Also, the P-V curve method is used to evaluate the effects of higher PV-DG penetration levels on loading margin and voltage magnitude. The simulation results show that as the PV-DG units’ penetration level increases, a greater level of harmonic distortion is injected, implying that the PV-DG units should only be integrated up to the network’s maximum capacity. Therefore, high harmonic distortion is produced when the PV-DG units are penetrated beyond this maximum penetration level, which has a negative impact on the system’s performance. The total voltage harmonic distortion is 4.17 % and 4.24 % at PCC1 and PCC2 at the highest penetration level, allowing the acceptable harmonic distortion limit. Also, grid-connected PV-DG units improve loading margin and voltage magnitude, according to the P-V curve results. The standard IEEE-33 bus distribution system is modelled in ETAP software and is used as a test system for this study.


Designs ◽  
2018 ◽  
Vol 2 (4) ◽  
pp. 55 ◽  
Author(s):  
Tawfiq Aljohani ◽  
Osama Mohammed

Electric Vehicles (EVs) impact on the grid could be very high. Unless we monitor and control the integration of EVs, the distribution network might experience unexpected high or low load that might exceed the system voltage limits, leading to severe stability issues. On the other hand, the available energy stored in the EVs can be utilized to free the distribution system from some of the congested load at certain times or to allow the grid to charge more EVs at any time of the day, including peak hours. This article presents dynamic simulations of the hour-to-hour operation of the distribution feeder to measure the grid’s reaction to the EV’s charging and discharging process. Four case scenarios were modeled here considering a 24-h distribution system load data on the IEEE 34 bus feeder. The results show the level of charging and discharging that were allowed on this test system, during each hour of the day, before violating the limits of the system. It also estimates the costs of charging throughout the day, utilizing time-of-use rates as well as the number of EVs to be charged on an hourly basis on each bus and provide hints on the best locations on the system to establish the charging infrastructure.


Author(s):  
Koteswara Rao Uyyuru ◽  
Mahesh Kumar Mishra

In this paper, the perfect harmonic cancellation (PHC), unity power factor (UPF) control strategies of distribution static compensator (DSTATCOM) are compared along with a newly proposed control strategy. In the proposed strategy, to get the best power factor, the conductance factors for the compensated load are evaluated for a specified source current total harmonic distortion (THD) limit. The performance of this method along with perfect harmonic cancellation (PHC) and unity power factor (UPF) strategies is evaluated on a distribution system model developed using PSCAD 4.2.1. In the distribution system, harmonic resonance is one of the prime factors for the harmonic propagation. Hence, in damping the harmonic resonance, selection of an appropriate control strategy for the DSTATCOM is crucial and this is verified with a detailed study. The simulation results are presented to show the performance of these strategies in load compensation and damping the harmonic propagation in the distribution system.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Cunbin Li ◽  
Gefu Qing ◽  
Peng Li ◽  
Tingting Yin

With the increasing complication, compaction, and automation of distribution network equipment, a small failure will cause an outbreak chain reaction and lead to operational risk in the power distribution system, even in the whole power system. Therefore, scientific assessment of power distribution equipment operation risk is significant to the security of power distribution system. In order to get the satisfactory assessment conclusions from the complete and incomplete information and improve the assessment level, an operational risk assessment model of distribution network equipment based on rough set and D-S evidence theory was built. In this model, the rough set theory was used to simplify and optimize the operation risk assessment indexes of distribution network equipment and the evidence D-S theory was adopted to combine the optimal indexes. At last, the equipment operational risk level was obtained from the basic probability distribution decision. Taking the transformer as an example, this paper compared the assessment result obtained from the method proposed in this paper with that from the ordinary Rogers ratio method and discussed the application of the proposed method. It proved that the method proposed in this paper is feasible, efficient, and provides a new way to assess the distribution network equipment operational risk.


2013 ◽  
Vol 392 ◽  
pp. 651-655
Author(s):  
Yan Jun Pang ◽  
Qing Hao Wang ◽  
Chuan Bo Liu ◽  
Xiao Liu ◽  
Tian Shi Wang

In order to improve the reliability evaluation to the distribution network, uncertainty factors about aging of components are considered under conventional reliability analysis of distribution system in the paper. The relationship between unavailability of aging of components and time (or limit age of components) is analyzed. Then the reliability indices are calculated by FMEA (Failure Mode and Effect Analysis). Finally distribution network reliability level is distinguished and the measures on improving the power distribution system reliability are presented.


Sign in / Sign up

Export Citation Format

Share Document