scholarly journals Distribution system power quality compensation using a HSeAPF based on SRF and SMC features

Author(s):  
Akram Qashou ◽  
Sufian Yousef ◽  
Abdallah A. Smadi ◽  
Amani A. AlOmari

AbstractThe purpose of this paper is to describe the design of a Hybrid Series Active Power Filter (HSeAPF) system to improve the quality of power on three-phase power distribution grids. The system controls are comprise of Pulse Width Modulation (PWM) based on the Synchronous Reference Frame (SRF) theory, and supported by Phase Locked Loop (PLL) for generating the switching pulses to control a Voltage Source Converter (VSC). The DC link voltage is controlled by Non-Linear Sliding Mode Control (SMC) for faster response and to ensure that it is maintained at a constant value. When this voltage is compared with Proportional Integral (PI), then the improvements made can be shown. The function of HSeAPF control is to eliminate voltage fluctuations, voltage swell/sag, and prevent voltage/current harmonics are produced by both non-linear loads and small inverters connected to the distribution network. A digital Phase Locked Loop that generates frequencies and an oscillating phase-locked output signal controls the voltage. The results from the simulation indicate that the HSeAPF can effectively suppress the dynamic and harmonic reactive power compensation system. Also, the distribution network has a low Total Harmonic Distortion (< 5%), demonstrating that the designed system is efficient, which is an essential requirement when it comes to the IEEE-519 and IEC 61,000–3-6 standards.

Author(s):  
Jamal Abdul-Kareem Mohammed ◽  
Arkan Ahmed Hussein ◽  
Sahar R. Al-Sakini

<p>Power distribution network in Iraq still suffers from significant problems regarding electricity distribution level. The most important problem is the disturbances that are occurring on lines voltages, which in turn, will negatively affect sensitive loads they feed on. Protection of these loads could be achieved efficiently and economically using the dynamic voltage restorer DVR when installed between the voltage source and load to inject required compensation voltage to the network during the disturbances period. The DVR mitigates these disturbances via restoring the load voltage to a pre-fault value within a few milliseconds. To control the DVR work, dq0 transformation concept and PID method with sinusoidal pulse-width modulation SPWM based converter had been used to correct the disturbances and thus enhance the power quality of the distribution network. The DVR performance was tested by MATLAB/Simulink with all kinds of expected voltage disturbances and results investigated the effectiveness of the proposed method.</p>


2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Dalila M.S. ◽  
Zaris I.M.Y. ◽  
Nasarudin A. ◽  
Faridah H.

This paper purposely to examine and analyse the impact of the distribution capacitors banks operation to the transition of total harmonic distortion (THD) level in distribution network system. The main advantage of this work is the simplicity algorithm of the method and the system being analysed using free access open software which is known as electric power distribution system simulator (OpenDSS). In this paper, the harmonic current spectrum which is collected from the commercial site was injected to a node point on IEEE13 bus in order to provide the initial measurement of THD for the network. The proper sizing of the capacitors banks has been set and being deactivated and activated throughout the network to see the transistion in the THD level in the system. The results were achieved by simulation of the data on the configured IEEE13 bus. The simulation work was done by using the combination of C++ source codes, OpenDSS and Microsoft Excel software. From the output results, the THD current has increased up to two times from the initial value in certain phases and for the THD voltage, the THD has increased up to three times from its initial value in all phases.


Author(s):  
R. S. Bajpai ◽  
Amarjeet Singh

This paper deals with sliding mode control of converter and its application to distributed generation. Sliding mode control is used to control the voltage source converter in voltage or current control mode. Modeling and control of H bridge converter system using sliding mode control is proposed. Easily implemented sliding surfaces provide prominent dynamic characteristics against changes in the load and in the input voltage. Distribution static compensator (DSTATCOM) is used to control the voltage of the bus to which it is connected to a balance sinusoid in respect of the harmonic distortion in supply or load side. A variable wind turbine generator is used to produces a variable DC voltage which is placed as input voltage source to converter of DSTATCOM. A control strategy for grid voltage control using DSTATCOM in voltage control mode has been implemented in respect of the wind variation. The results are validated using PSCAD/EMTDC simulation studies.


2015 ◽  
Vol 734 ◽  
pp. 701-706
Author(s):  
Xian Bin Dai

as the basic method used to analyze the stability of nonlinear dynamic system, it is able to more deeply discuss the stability problems of power system in the vicinity of a critical point in comparison with traditional analysis method. Active power distribution network is a complicated nonlinear dynamic system. The change of voltage stability is the process to convert from stable status to bifurcation in essence. Taking 10-node active distribution system as an example, the author studies the influence of reactive power optimization on voltage stability based on bifurcation theory. The author explains the reactive optimization algorithm based on numerical simulation, namely, it is the decision - making algorithm in order to realize multiple purposes of having minimum power network loss, largest reactive power margin with stable operation of power distribution network and minimum voltage floating in system fluctuation, which is proved to be effective in elevating power distribution system stability, reducing power loss and improving voltage quality.


Author(s):  
Lakshman Naik P ◽  
K Palanisamy

<p>The Green Energy sources (solar, wind) are performing a vigorous role to reach the electrical power demand. Due to the presence of non-linear loads, reactive loads in the distribution system and the injection of wind power into the grid integrated system results power quality issues like current harmonics, voltage fluctuations, reactive power demand etc. This paper mainly investigates the designing and satisfactory performance evaluation of solar farm as PV-STATCOM (Static Synchronous Compensator) for enhancement of power quality in grid tie system by using MATLAB environment (Simulink). The proportional and integral (PI) Controller and Hysteresis Current Controller (HCC) were effectively utilized to inject the desired current from voltage source converter (VSC) based PV-STATCOM at PCC for the mitigation of quality related problems in the proposed test system.</p>


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 831 ◽  
Author(s):  
Janeth Alcalá ◽  
Víctor Cárdenas ◽  
Alejandro Aganza ◽  
Jorge Gudiño-Lau ◽  
Saida Charre

Nowadays, the use of power converters to control active and reactive power in AC–AC grid-connected systems has increased. With respect to indirect AC–AC converters, the tendency is to enable the back-to-back (BTB) voltage source converter (VSC) as an active power filter (APF) to compensate current harmonics. Most of the reported works use the BTB-VSC as an auxiliary topology that, combined with other topologies, is capable of active power regulation, reactive power compensation and current harmonic filtering. With the analysis presented in this work, the framework of the dynamics associated with the control loops is established and it is demonstrated that BTB-VSC can perform the three tasks for which, in the reviewed literature, at least two different topologies are reported. The proposed analysis works to support the performance criteria of the BTB-VSC when it executes the three control actions simultaneously and the total current harmonic distortion is reduced from 27.21% to 6.16% with the selected control strategy.


Author(s):  
Ameerul A. J. Jeman ◽  
Naeem M. S. Hannoon ◽  
Nabil Hidayat ◽  
Mohamed.M.H. Adam ◽  
Ismail Musirin ◽  
...  

<span>Voltage-source converter (VSC) topology is widely used for grid interfacing of distributed generation (DG) systems such as the photovoltaic system (PV). Since the operation of the VSC is essential to ensure quality of active and reactive power injected to the grid, a control approach is needed to deal with the uncertainties in the grid such as faults. This paper presents a non-linear controller design for a three-phase voltage source converter (VSC). The dynamic variables adopted for the VSC are the instantaneous real and reactive power components. The control approach that interface the VSC between the PV system and the grid are subjected to the current-voltage based. PV system injects active power to the grid and local load while utility grid monitors the power compensation of load reactive power. The proposed non-linear control strategy is implemented for the VSC to ensure fast error tracking and finite convergence time. The adaptive nature of the proposed non-linear control provides more robustness, less sluggish fault recovery compared to conventional PI control. The comprehensive numerical model is demonstrated in MATLAB script environment with power system disturbances such as faults in the grid. The simulation of proposed system is being carried out in MATLAB/SIMULINK environment to validate the control scheme. The proposed control system regulates the VSC ac side real and reactive power component and the dc side voltage.</span>


Author(s):  
Mr. L NarayanaGadupudi Et.al

 Internal Liability of power system transmission lines influenced by the turbulences owing to catastrophic disasters. In order to achieve Constant Voltage Stability at both ends of the transmission lines, Static Synchronous Compensator (STATCOM) is imperative.  Voltage source Converter mechanisms augment with switching frequency control methodologies are widely adopted to regulate the reactive power. By deliberating IEEE Standards, the minimization of Total Harmonic Distortion (THD) is conceivable with STATCOM. This paper depicts the advancement of VSC based STATCOM approaches and the methodologies to minimize the switching losses. Economical management of High-Power ratings systems is also discussed in this paper


2018 ◽  
Vol 7 (2.8) ◽  
pp. 673
Author(s):  
Savitha Venkatesan ◽  
Booma Nagarajan

Due to unpredicted non-linear loads, power quality problems, a raise in the transmission system. One such problem is voltage sag. Voltage sag is caused by the non-linear load which demands reactive power, but the balanced 3F source provides required reactive power of the load with reduced voltage at the receiving end. In this paper, simulation study has been performed to reducethe voltage sag issue. A transmission system with generation source with different loading conditions is considered and study has been done. A 3F medium P model transmission line is designed with a power source of 11kV.  A shunt connected compensation unit called Static Synchronous Compensator (STATCOM) reduces the voltage sag in the transmission line. STATCOM provides the required reactive power demanded by the non-linear load along with the source for compensation of voltage sag. The STATCOM circuit comprises of Voltage source converter(VSC) unit and a DC source. Reactive power compensation is done by VSC unit firing angle control. The source of the STATCOM can also be from renewable energy system. This AC source is converted by a AC-DC-AC converter unit.The firing angle is controlled by the control unit which ensures the continuous and balanced power flow even under sudden change in load conditions. The simulation results depict the characteristics of the developed STATCOM.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 84
Author(s):  
B Pragathi ◽  
M Suman

Along with Generation of power, distribution of power is equally important.The power produced by the solar farm are utilized only during daytime, the solar farm remain idle during night and operate below capacity in initial morning and late afternoon. A grid connected solar farm uses photovoltaic (PV) arrays for generation of DC power which is transformed to AC using inverter modeling. A FACTS family device STATCOM is centered on a voltage source converter which operates as a rectifier and an inverter is used to enhance steady power transmission limits with reactive power, voltage and damping control. A majorsection of the STATCOM is a voltage source converter which is also anessential element of PV solar module. A novel concept was proposed by which PV solar module can be operated as a STATCOM, known as PV-STATCOM in the night-time and day time. VLSI technology is used to generate the trigger pulses for three phase inverter using the VHDL programming language to generate the signal for the control of inverter section in STATCOM. The HDL compiling and FPGA implementation is done using MATLAB/SIMULINK.  


Sign in / Sign up

Export Citation Format

Share Document