Small-Disturbance Stability of a Wind Farm with Virtual Synchronous Generators under the Condition of Weak Grid Connection

Author(s):  
Wenjuan Du ◽  
Wenkai Dong ◽  
Yang Wang ◽  
Haifeng Wang
Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2115
Author(s):  
Mostafa Abdollahi ◽  
Jose Ignacio Candela ◽  
Andres Tarraso ◽  
Mohamed Atef Elsaharty ◽  
Elyas Rakhshani

Nowadays, modern power converters installed in renewable power plants can provide flexible electromechanical characteristics that rely on the developed control technologies such as Synchronous Power Controller (SPC). Since high renewable penetrated power grids result in a low-inertia system, this electromechanical characteristic provides support to the dynamic stability of active power and frequency in the power generation area. This goal can be achieved through the proper tuning of virtual electromechanical parameters that are embedded in the control layers of power converters. In this paper, a novel mathematical pattern and strategy have been proposed to adjust dynamic parameters in Renewable Static Synchronous Generators controlled by SPC (RSSG-SPC). A detailed dynamic modeling was obtained for a feasible design of virtual damping coefficient and virtual moment of inertia in the electrometrical control layer of RSSG-SPC’s power converters. Mathematical solutions, modal analysis outcomes, time-domain simulation results, and real-time validations of the test in IEEE-14B benchmark confirm that the proposed method is an effective procedure for the dynamic design of RSSG-SPC to provide these dynamic stability supports in grid connection.


2016 ◽  
Vol 4 (2) ◽  
pp. 256-264 ◽  
Author(s):  
Xinshou TIAN ◽  
Gengyin LI ◽  
Yongning CHI ◽  
Weisheng WANG ◽  
Haiyan TANG ◽  
...  

Author(s):  
Innocent Onyebuchi Ozioko ◽  
Nnaemeka Sunday Ugwuanyi ◽  
Arthur Obiora Ekwue

Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3316 ◽  
Author(s):  
Dong Wang ◽  
Xiaojie Zhang ◽  
Lei Yang ◽  
Yunhui Huang ◽  
Wei Huang ◽  
...  

Recent studies show that the loss of stability for a voltage-source converter (VSC) in weak-grid connection is largely related to its synchronization unit, i.e., the phase-locked loop (PLL). This paper studies the synchronization stability of a system comprised by two VSCs in parallel connection to a weak grid. A reduced transfer function based small-signal model, which can allow for the interactions between PLL and converter outer power controls, is first proposed. Then, an improved net damping criterion is used to analyze the damping and stability characters of such system under various operating conditions and different controller configurations. Compared to the conventional net damping criterion, the used criterion has wider applicability in terms of stability judgment. Case studies show that the studied system tends to be unstable at weak-grid or heavy-loading conditions. The instability can be in the form of oscillations or monotonic divergence, in which, the latter is more likely to occur for the converters without grid voltage regulation capabilities. Besides, the net damping-based sensitivity studies can provide guidance on control tuning or design for stability enhancement. Detailed model-based time domain simulations are conducted to verify the analysis results.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Lihui Guo ◽  
Hao Bai

With the increasing penetration of wind power, the randomness and volatility of wind power output would have a greater impact on safety and steady operation of power system. In allusion to the uncertainty of wind speed and load demand, this paper applied box set robust optimization theory in determining the maximum allowable installed capacity of wind farm, while constraints of node voltage and line capacity are considered. Optimized duality theory is used to simplify the model and convert uncertainty quantities in constraints into certainty quantities. Under the condition of multi wind farms, a bilevel optimization model to calculate penetration capacity is proposed. The result of IEEE 30-bus system shows that the robust optimization model proposed in the paper is correct and effective and indicates that the fluctuation range of wind speed and load and the importance degree of grid connection point of wind farm and load point have impact on the allowable capacity of wind farm.


Sign in / Sign up

Export Citation Format

Share Document