scholarly journals Position Control of Motion Compensation Cardiac Catheters

2011 ◽  
Vol 27 (6) ◽  
pp. 1045-1055 ◽  
Author(s):  
Samuel B. Kesner ◽  
Robert D. Howe
2020 ◽  
Vol 39 (5) ◽  
pp. 586-597 ◽  
Author(s):  
Paul M Loschak ◽  
Alperen Degirmenci ◽  
Cory M Tschabrunn ◽  
Elad Anter ◽  
Robert D Howe

A robotic system for automatically navigating ultrasound (US) imaging catheters can provide real-time intra-cardiac imaging for diagnosis and treatment while reducing the need for clinicians to perform manual catheter steering. Clinical deployment of such a system requires accurate navigation despite the presence of disturbances including cyclical physiological motions (e.g., respiration). In this work, we report results from in vivo trials of automatic target tracking using our system, which is the first to navigate cardiac catheters with respiratory motion compensation. The effects of respiratory disturbances on the US catheter are modeled and then applied to four-degree-of-freedom steering kinematics with predictive filtering. This enables the system to accurately steer the US catheter and aim the US imager at a target despite respiratory motion disturbance. In vivo animal respiratory motion compensation results demonstrate automatic US catheter steering to image a target ablation catheter with 1.05 mm and 1.33° mean absolute error. Robotic US catheter steering with motion compensation can improve cardiac catheterization techniques while reducing clinician effort and X-ray exposure.


2010 ◽  
Vol 6 (2) ◽  
pp. 116-122
Author(s):  
Aamir Hashim Obeid Ahmed ◽  
Martino O. Ajangnay ◽  
Shamboul A. Mohamed ◽  
Matthew W. Dunnigan

2017 ◽  
Vol 10 (4) ◽  
pp. 325
Author(s):  
Angie Julieth Valencia Castañeda ◽  
Mauricio Felipe Mauledoux Monroy ◽  
Oscar Fernando Avilés Sánchez ◽  
Paola Andrea Niño Suarez ◽  
Edgar Alfredo Portilla Flores

2010 ◽  
Vol E93-C (3) ◽  
pp. 253-260 ◽  
Author(s):  
Xianmin CHEN ◽  
Peilin LIU ◽  
Dajiang ZHOU ◽  
Jiayi ZHU ◽  
Xingguang PAN ◽  
...  

2013 ◽  
Vol 43 (1) ◽  
pp. 47-60
Author(s):  
Mihail Tsveov ◽  
Dimitar Chakarov

Abstract In the paper, different approaches for compliance control for human oriented robots are revealed. The approaches based on the non- antagonistic and antagonistic actuation are compared. In addition, an approach is investigated in this work for the compliance and the position control in the joint by means of antagonistic actuation. It is based on the capability of the joint with torsion leaf springs to adjust its stiffness. Models of joint stiffness are presented in this paper with antagonistic and non-antagonistic influence of the spring forces on the joint motion. The stiffness and the position control possibilities are investigated and the opportunity for their decoupling as well. Some results of numerical experiments are presented in the paper too.


Sign in / Sign up

Export Citation Format

Share Document