Islanding Detection Method with Load Power Factor Improvement and High Frequency Transient Suppressing

2021 ◽  
pp. 1-1
Author(s):  
Marouane El AZZAOUI
Author(s):  
G. Udhayakumar ◽  
Rashmi M R ◽  
K. Patel ◽  
G.P. Ramesh ◽  
Suresh A

<p>Artificial Ozone Generating system needs High Voltage, High Frequency supply. The Ozonator distorts the supply currents and henceforth affect the supply power factor. This paper presents the performance comparison of PWM inverter to Power Factor Corrected (PFC) converter with PWM inverter based High-voltage High-frequency power supply for ozone generator system. The conventional inverter has front end bridge rectifier with smoothing capacitor. It draws non-sinusoidal current from ac mains; as a result input supply has more harmonics and poor power factor. Hence, there is a continuous need for power factor improvement and reduction of line current harmonics.  The proposed system has active power factor correction converter which is used to achieve sinusoidal current and improve the supply power factor. The active PFC converter with PWM inverter fed ozone generator generates more ozone output compared to the conventional inverter. Thus the proposed system has less current harmonics and better input power factor compared to the conventional system.  The performance of the both inverters are compared and analyzed with the help of simulation results presented in this paper.</p>


2017 ◽  
Vol 8 (1) ◽  
pp. 74-83 ◽  
Author(s):  
Ke Jia ◽  
Hongsheng Wei ◽  
Tianshu Bi ◽  
David W. P. Thomas ◽  
Mark Sumner

The aim of the article is to maximize the battery life using LLC resonant tank. LLC tank designing methodology and also the practical designing examination is introduced in LLC multi converter. Designed dc- dc converter increases the battery life by eliminating low and high frequency current ripples. In addition, bridgeless cuk converter is used for power factor improvement. To achieve the better power factor and to reduce the conduction losses the cuk converter is aimed to function in discontinuous mode of conduction (DCM). DC output voltage ranging 42-24 V for 650 W is obtained from the modelling for battery charging application.


2016 ◽  
Vol 136 (12) ◽  
pp. 991-996 ◽  
Author(s):  
Masataka Minami ◽  
Takeshi Ito ◽  
Shin-ichi Motegi ◽  
Masakazu Michihira

2021 ◽  
Vol 9 (6) ◽  
pp. 651
Author(s):  
Yan Yan ◽  
Hongyan Xing

In order for the detection ability of floating small targets in sea clutter to be improved, on the basis of the complete ensemble empirical mode decomposition (CEEMD) algorithm, the high-frequency parts and low-frequency parts are determined by the energy proportion of the intrinsic mode function (IMF); the high-frequency part is denoised by wavelet packet transform (WPT), whereas the denoised high-frequency IMFs and low-frequency IMFs reconstruct the pure sea clutter signal together. According to the chaotic characteristics of sea clutter, we proposed an adaptive training timesteps strategy. The training timesteps of network were determined by the width of embedded window, and the chaotic long short-term memory network detection was designed. The sea clutter signals after denoising were predicted by chaotic long short-term memory (LSTM) network, and small target signals were detected from the prediction errors. The experimental results showed that the CEEMD-WPT algorithm was consistent with the target distribution characteristics of sea clutter, and the denoising performance was improved by 33.6% on average. The proposed chaotic long- and short-term memory network, which determines the training step length according to the width of embedded window, is a new detection method that can accurately detect small targets submerged in the background of sea clutter.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3843
Author(s):  
Sultan Sh. Alanzi ◽  
Rashad M. Kamel

This paper investigates the maximum photovoltaic (PV) penetration limits on both overhead lines and underground cables medium voltage radial distribution system. The maximum PV penetration limit is estimated considering both bus voltage limit (1.05 p.u.) and feeder current ampacity (1 p.u.). All factors affect the max PV penetration limit are investigated in detail. Substation voltage, load percentage, load power factor, and power system frequency (50 Hz or 60 Hz) are analyzed. The maximum PV penetration limit associated with overhead lines is usually higher than the value associated with the underground cables for high substation voltage (substation voltage = 1.05 and 1.04 p.u.). The maximum PV penetration limit decreases dramatically with low load percentage for both feeder types but still the overhead lines accept PV plant higher than the underground cables. Conversely, the maximum PV penetration increases with load power factor decreasing and the overhead lines capability for hosting PV plant remains higher than the capability of the underground cables. This paper proved that the capability of the 60-Hz power system for hosting the PV plant is higher than the capability of 50 Hz power system. MATLAB software has been employed to obtain all results in this paper. The Newton-Raphson iterative method was the used method to solve the power flow of the investigated systems.


Sign in / Sign up

Export Citation Format

Share Document