On the Performance Improvements of Deep Learning Methods for Audio Event Detection and Classification

Author(s):  
Claudio Eutizi ◽  
Francesco Benedetto
Author(s):  
Shao-Yen Tseng ◽  
Juncheng Li ◽  
Yun Wang ◽  
Florian Metze ◽  
Joseph Szurley ◽  
...  

Author(s):  
Marcel Bengs ◽  
Finn Behrendt ◽  
Julia Krüger ◽  
Roland Opfer ◽  
Alexander Schlaefer

Abstract Purpose Brain Magnetic Resonance Images (MRIs) are essential for the diagnosis of neurological diseases. Recently, deep learning methods for unsupervised anomaly detection (UAD) have been proposed for the analysis of brain MRI. These methods rely on healthy brain MRIs and eliminate the requirement of pixel-wise annotated data compared to supervised deep learning. While a wide range of methods for UAD have been proposed, these methods are mostly 2D and only learn from MRI slices, disregarding that brain lesions are inherently 3D and the spatial context of MRI volumes remains unexploited. Methods We investigate whether using increased spatial context by using MRI volumes combined with spatial erasing leads to improved unsupervised anomaly segmentation performance compared to learning from slices. We evaluate and compare 2D variational autoencoder (VAE) to their 3D counterpart, propose 3D input erasing, and systemically study the impact of the data set size on the performance. Results Using two publicly available segmentation data sets for evaluation, 3D VAEs outperform their 2D counterpart, highlighting the advantage of volumetric context. Also, our 3D erasing methods allow for further performance improvements. Our best performing 3D VAE with input erasing leads to an average DICE score of 31.40% compared to 25.76% for the 2D VAE. Conclusions We propose 3D deep learning methods for UAD in brain MRI combined with 3D erasing and demonstrate that 3D methods clearly outperform their 2D counterpart for anomaly segmentation. Also, our spatial erasing method allows for further performance improvements and reduces the requirement for large data sets.


2018 ◽  
Vol 8 (8) ◽  
pp. 1397 ◽  
Author(s):  
Veronica Morfi ◽  
Dan Stowell

In training a deep learning system to perform audio transcription, two practical problems may arise. Firstly, most datasets are weakly labelled, having only a list of events present in each recording without any temporal information for training. Secondly, deep neural networks need a very large amount of labelled training data to achieve good quality performance, yet in practice it is difficult to collect enough samples for most classes of interest. In this paper, we propose factorising the final task of audio transcription into multiple intermediate tasks in order to improve the training performance when dealing with this kind of low-resource datasets. We evaluate three data-efficient approaches of training a stacked convolutional and recurrent neural network for the intermediate tasks. Our results show that different methods of training have different advantages and disadvantages.


Author(s):  
M. N. Favorskaya ◽  
L. C. Jain

Introduction:Saliency detection is a fundamental task of computer vision. Its ultimate aim is to localize the objects of interest that grab human visual attention with respect to the rest of the image. A great variety of saliency models based on different approaches was developed since 1990s. In recent years, the saliency detection has become one of actively studied topic in the theory of Convolutional Neural Network (CNN). Many original decisions using CNNs were proposed for salient object detection and, even, event detection.Purpose:A detailed survey of saliency detection methods in deep learning era allows to understand the current possibilities of CNN approach for visual analysis conducted by the human eyes’ tracking and digital image processing.Results:A survey reflects the recent advances in saliency detection using CNNs. Different models available in literature, such as static and dynamic 2D CNNs for salient object detection and 3D CNNs for salient event detection are discussed in the chronological order. It is worth noting that automatic salient event detection in durable videos became possible using the recently appeared 3D CNN combining with 2D CNN for salient audio detection. Also in this article, we have presented a short description of public image and video datasets with annotated salient objects or events, as well as the often used metrics for the results’ evaluation.Practical relevance:This survey is considered as a contribution in the study of rapidly developed deep learning methods with respect to the saliency detection in the images and videos.


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Filip Ferdinand ◽  
...  

2018 ◽  
Author(s):  
Pankaj Joshi ◽  
Digvijaysingh Gautam ◽  
Ganesh Ramakrishnan ◽  
Preethi Jyothi

Sign in / Sign up

Export Citation Format

Share Document