Fault-Tolerant Control Strategy for Five-phase PMSM Drive System with High-Resistance Connection

Author(s):  
Jun Hang ◽  
Xixi Ren ◽  
Chunyan Tang ◽  
Minghao Tong ◽  
Shichuan Ding
Electronics ◽  
2018 ◽  
Vol 7 (9) ◽  
pp. 159 ◽  
Author(s):  
Sonali Chetan Rangari ◽  
Hiralal Murlidhar Suryawanshi ◽  
Mohan Renge

The developed torque with minimum oscillations is one of the difficulties faced when designing drive systems. High ripple torque contents result in fluctuations and acoustic noise that impact the life of a drive system. A multiphase machine can offer a better alternative to a conventional three-phase machine in faulty situations by reducing the number of interruptions in industrial operation. This paper proposes a unique fault-tolerant control strategy for a five-phase induction motor. The paper considers a variable-voltage, variable-frequency control five-phase induction motor in one- and two-phase open circuit faults. The four-phase and three-phase operation modes for these faults are utilized with a modified voltage reference signal. The suggested remedial strategy is the method for compensating a faulty open phase of the machine through a modified reference signal. A modified voltage reference signal can be efficiently executed by a carrier-based pulse width modulation (PWM) system. A test bench for the execution of the fault-tolerant control strategy of the motor drive system is presented in detail along with the experimental results.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3163
Author(s):  
Chen Huang ◽  
Lidan Zhou ◽  
Zujia Cao ◽  
Gang Yao

Multi-phase motors and generators are regarded with great fault tolerance capability, especially on open-circuit faults. Various mathematics analytical methods are applied for their fault control. In this paper, a fault-tolerant control strategy with asymmetric phase current for the open-circuit faults with arbitrary phases in the six-phase PMSM (six-phase permanent magnetic synchronous motor, 6P-PMSM) system, is proposed for better electrical and dynamical performance of the machine. An innovative mathematical model for PMSM under one to four-phase-open circuit faults are established considering the asymmetry of the machine. Combining with time-varying relations in machines’ working conditions, targeted decoupling transformation matrixes of every kind of open-circuit faults are settled by voltage equations under different faults. Modified control strategy with a connection between the neutral point and the inverter’s DC side is presented, which aims at increasing the system redundancy and reducing the amplitude of phase currents. Besides, improved control loops with two layers are put forward as well, with which the PMSM system acquires fewer harmonics in phase current and smoother electromagnetic torque. Simulation and experimental results of open-circuit faults are provided for verification of the theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document